
AD-A247 696

Technical Report 1463
November 1991

Extensibility Experiments
with the Software
Life-Cycle Support
Environment

S. A. Parker
R. H. Mumm

MAR I a 199Z

Approved for public release; distribution Is unlrmted.

92-06875

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. T. SHEARER, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report was done under the Computer Technology block program,
Software Engineering for Command, Control, Communication Systems project,
Software Engineering Environment Prototypes task. The work was done in FY 91 by
S. A. Parker and R. H. Mumm of the Computer Software and Technology Branch,
NOSC, Code 411.

Released by Under authority of
G. Schulte, Head A. G. Justice, Head
Computer Software and Information Processing
Technology Branch and Displaying Division

ACKNOWLEDGMENTS

The authors thank Marty Hogan and Tom Strelich, General Research Corpo-
ration and Dr. Michael Shapiro, Naval Ocean Systems Center, for reviewing this
document and providing valuable comments. We really appreciate all the technical
assistance from Marty Hogan.

JT

EXECUTIVE SUMMARY

OBJECTIVE

Our objective was to investigate the extensibility of the Software Life-Cycle Support
Environment (SLCSE). The research focused on whether the environment could be tai-
lored to meet the needs of specific Navy projects.

RESULTS

The SLCSE was successfully tailored to meet the needs of the Ship Gridlock project
at the Naval Surface Weapons Center, Dahlgren. Eight tools and the ALS/N ADAVAX
compiler were integrated into the environment.

RECOMMENDATIONS

1. The enhanced SLCSE must have a user interface that is significantly easier to

use. An X Window implementation that is developed with assistance from
human factors experts should help.

2. The enhanced SLCSE needs improved documentation. There should be a single
user's guide for using the environment that includes a section on basic instruc-
tions for the novice user. There also needs to be a single user's guide for how
to do tool integration. In the existing SLCSE tool integration instructions are
incompletely described in a collection of manuals. All user instructions need to

be beta tested. On-line user's guides would be helpful.

3. The enhanced SLCSE needs to provide an easier method for integrating tools.
Users must be able to easily integrate their own tools.

4. We recommend that NOSC take an active role in the development of the

enhanced SLCSE to ensure that the SLCSE provides the capabilities required by
the Navy. This participation should include attending reviews and demonstrations
as well as being a beta test site.

Accession For

J,.-

17.

CONTENTS

1.0 INTRO DU CTIO N ... 1

2.0 OVERVIEW OF THE SLCSE 3

2.1 BACKG RO UND .. 3

2.2 MAJOR CHARACTERISTICS OF EXISTING SLCSE 4

2.2.1 M ultiple U ser Roles 4

2.2.2 Com m on Database 5

2.2.3 Automated Document Generation 5

2.2.4 Comm on User Interface 5

2 .2.5 E xtensibility 6

2.2.6 Support for Multiple Languages 6

2.2.7 Support for Multiple Projects 7

2.2.8 SLC SE Toolset 7

2.3 COMMERCIAL SOFTWARE TO BE PURCHASED 10

2.4 HARDWARE REQUIREMENTS 10

2.5 CHARACTERISTICS OF THE FUTURE SLCSE 10

2.5.1 User Interface Enhancements 11

2.5.2 Repository Enhancements 11

2.5.3 Tool Enhancem ents 11

2.5.4 Tool Integration Enhancements 11

2.5.5 Hosting to Additional Platforms 12

2.5.6 Product Plans 12

3.0 SLCSE AS A PROJECT TOOL 13

3.1 SLCSE STRENGTHS 13

3.1.1 Tailoring of SLCSE Toolset 13

3.1.2 U ser R oles .. 13

3.1.3 Ease of Learning 13

3.1.4 Document Generation Capability 14

3.1.5 Stability ... 14

3.1.6 Tailoring of SLCSE Database 14

iii

3.2 SOME SLCSE WEAKNESSES 14

3.2.1 U ser Interface 14

3.2.2 U ser's M anual 15

3.2.3 Error M essages 15

3.3 SUGGESTED ENHANCEMENTS TO SLCSE 15

4.0 SLCSE TOOL INTEGRATION 17

4.1 LEVELS OF TOOL INTEGRATION 17

4.1.1 Sim ple T ools 17

4.1.2 UI-Conform ant Tools 17

4.1.3 Database Conformant Tools 18

4.2 HIGH-LEVEL STEPS FOR TOOL INTEGRATION 18

4.2.1 Integrating Sim ple Tools 20

4.2.2 Integrating UI-Conformant Tools 20

4.3 LESSONS LEARNED 21

5.0 INTEGRATING ALS/N TOOLS 25

5.1 INTEG RA TION .. 25

5.2 ALS/N SETUP WINDOW DESCRIPTIONS AND USE 25

6.0 RECOMMENDATIONS .. 33

6.1 USER INTERFACE 33

6.2 EX TEN SIBILIT Y ... 33

6.3 DOCUM ENTATION 33

6.4 E-SLCSE AS NAVY C3 SOFTWARE DEVELOPMENT

ENVIRONM ENT ... 33

6.5 ADDITIONAL ON-LINE CAPABILITIES 34

7.0 REFEREN C ES 35

8.0 BIBLIO G RA PH Y ... 36

APPENDICES

A SLCSE INSTRUCTIONS FOR THE NOVICE A-]

B DETAILED STEPS FOR TOOL INTEGRATION B-I

C SOURCE FILES FOR ALS/N WINDOWS C-I

D DESCRIPTION OF TOOLS ADDED TO SLCSE BY NOSC D-1

iv

FIGURES

4-1 Tool integration process....................................... 19

4-2 BBoard setup window... 22

5-1 ADAVAX setup window....................................... 26

5-2 LN-KVAX setup window....................................... 28

5-3 EXPVMS setup window....................................... 29

5-4 IMPVAX setup window.. 30

1.0 INTRODUCTION

This report describes the research carried out on the Software Life-Cycle Support
Environment (SLCSE*) by the Software Engineering Environment (SEE) prototypes

task of the Software Engineering for C3 Systems project. The focus of this investiga-
tion is to perform extensibility experiments with the SLCSE. These experiments
included the development of an interface to the ALS/N ADAVAX compiler and the
integration of a number of public domain and other no-cost software tools into the
SLCSE. One goal of this research was to determine if the SLCSE could be tailored to
meet the needs of a specific project.

The SLCSE was successfully tailored to meet the needs of the Ship Gridlock Project
(SGP), Naval Surface Warfare Center (NSWC), Dahlgren. Most tools that the SGP is
currently using, as well as others that would be useful to the project, were integrated
into the SLCSE. The tools integrated include three developed by NSWC-a Language
Generator Tool (LGEN), an electronic Bulletin Board (BBoard) program, and a Lexical
Analyzer Generator Tool (LEXGEN); two developed by Naval Ocean Systems Center
(NOSC), Code 411, Ada Primitive Compilation Order Tool (APRICOT) and Bit-
Oriented Message Definer (BMD); and three from the Ada Software Repository (ASR)
at White Sands-the NASA/Goddard Space Flight Center pretty printer, developed by
AdaCraft; the Ada line counter, File Checker, developed by Texas Instruments (T.I.),
and the body stubber from the ASR, developed by Concurrent Computer Corporation.

NOSC Code 411 software engineers carried out this research with substantial assis-
tance from General Research Corporation (GRC). GRC provided support in three
ways-installation of the SLCSE, on-site classroom training on the SLCSE, and on-call
consultation to answer SLCSE and tool integration questions. The research demon-
strated environments that exist today, in this case the SLCSE, that can be tailored to
meet the needs of specific projects.

This report includes the following

* Overview of the SLCSE

* Description of the future SLCSE

e Discussion of strengths/weaknesses of SLCSE

* Description of how to integrate tools

0 Description of ALS/N integration

0 Recommendations

• User Instructions for the Novice

SLCSE is pronounced "slice.-

" Detailed instructions for integrating tools

* Description of no-cost tools integrated

Potential users of this report are projects that use or plan to use the existing
SLCSE. This report is beneficial to these projects even if they do not plan to tailor the
SLCSE, but rather use it as is. The tool integration instructions provided are more
detailed than any available from GRC. The instructions for the novice will also be use-
ful to the new SLCSE user. This report provides helpful feedback to Rome Labs (RL)
and to International Software Systems Incorporated (ISSI) for the development of the
enhanced SLCSE. Furthermore, it may prove to be useful to the Software Technology
for Adaptable Reliable Software (STARS) prime contractors. Tools integrated into the
SLCSE under this project are useful for other Ada projects. All tools integrated under
this project are available to DoD laboratories for free. The body stubber and Ada line
counter were enhanced as part of this effort.

2

2.0 OVERVIEW OF THE SLCSE

2.1 BACKGROUND

The SLCSE is an Ada software development environment framework that was
developed by GRC for RL as a proof-of-concept prototype. The SLCSE development is
a continuation of work begun by the Software Technology for Adaptable Reliable Sys-
tems (STARS) Software Engineering Environment (SEE) team. The STARS SEE team
developed an Operational Concept Document (OCD) (STARS JPO, 1985) containing a
comprehensive set of requirements for a SEE to support the life-cycle development of
software for the Department of Defense (DoD). The OCD provided a basis for the
development of SLCSE. In 1984, the SLCSE Exploratory Development (6.2) research
began with the definition of a SEE for life-cycle development of Air Force Command,

Control, Communications, and Intelligence (C31) systems. Advanced Development (6.3)
research began in 1986. This research was accomplished using an incremental build/
rapid prototyping methodology similar to Boehm's Spiral Model (Boehm, 1988). The

initial version was delivered to RL in August 1989.

The SLCSE (command executive and tools) is approximately 120K source lines of
code. SLCSE consists of approximately 80 percent Ada and 20 percent existing code
written in other languages (FORTRAN, MACRO). It is VAX/VMS-based and uses DEC
VT100-type terminals. The SLCSE framework was designed so it could be tailored to
specific software development projects. SLCSE possesses a generic user interface sub-
system and a generic database subsystem that are used to create project-specific envi-
ronments. The project-specific environments may be thought of as instances of the

generic environment framework.

RL initiated the SLCSE Beta testing at various Air Force Logistics Command

(AFLC) sites.

The SLCSE test sites included

1. Warner-Robins Air Logistics Center (WR-ALC), Robins AFB, Georgia

Warner-Robins conducted an evaluation of the SLCSE and its tools. GRC inte-
grated a test toolsct into the SLCSE.

2. Ogden Air Logistics Center (OO-ALC), Hill AFB, Utah

GRC added an interface to a C compiler. The database was populated with
information for the Navigational Weapons Delivery System (NWDS) Operations
Flight Program for F4 aircraft. A Software Requirements Specification was gen-
erated using the SLCSE documentation generation capability.

3

3. Electronic Systems Division (ESD)/MITRE Corporation, Bedford, Massachusetts

MITRE performed an assessment of the SLCSE to determine its suitability for
Air Force acquisition and software development support. Existing software-

requirements specifications were mapped into the SLCSE database.

4. C.S. Draper Laboratory, Cambridge, Massachusetts

The SLCSE database was populated with requirements, test cases and other
information for a segment of the Operation Flight Program for an F-111A air-

craft. A Software Design Document was generated. Draper personnel used the
Automated Life-Cycle Change Impact Analysis (ALICIA) tool to trace the data

model.

5. NASA Houston/MITRE Corporation, Houston, Texas

Existing Ada simulation software was used as a test case. The SLCSE database

was populated with information from this project. A Software Requirements
Specification and Software Design Document were generated. This effort was
conducted for the Software Technology Branch at NASA.

6. Sacramento Air Logistics Center (SM-ALC), McClellan AFB, California

The C.S. Draper Laboratory effort described above was done jointly with the
Sacramento Air Logistics Center.

2.2 MAJOR CHARACTERISTICS OF EXISTING SLCSE

2.2.1 Multiple User Roles

The SLCSE employs the concept of user roles. Examples of roles include acquisi-

tion management, programming, and secretarial. The software tools a user may access
depends on his or her role. For example, a programmer would have access to general-
purpose tools, like editors, along with compilers, and linkers. A programmer typically

would not have access to project management and quality assurance tools. While a sec-
retary would probably have access to only a few tools, such as the mailer, bulletin

board, and perhaps the documentation generation tool. This concept of user roles is

based on the STARS OCD. The user accesses tools for his or her role through the
common user interface. Users may have multiple roles. All roles supported by the
SLCSE are listed below.

1. Acquisition Management

2. Project Management

3. Project Administration

4. System Analysis

4

5. System Integration

6. Software Analysis

7. Programming

8. Software Testing

9. Software Integration

10. Verification and Validation

11. Quality Assurance

12. Configuration Management

13. Software Performance evaluation

14. Post Deployment Software Support

15. Training

16. Mission-Critical Software Support Engineering

17. SLCSE Installation

18. Secretarial

2.2.2 Common Database

The SLCSE contains an Entity-Relationship (ER) database that serves as a reposi-
tory for system software and project information as well as a medium for intertool
information exchange. The SLCSE ER database is con, acted on top of the
SMARTSTAR commercial, relational database.

2.2.3 Automated Document Generation

The Documentation Generation (DOCGEN) tool is provided within the SLCSE for
automated document creation. This tool is flexible-it allows users to construct docu-
ments in the format meeting their needs. Construction of the document is directed by
Document Generation Langiae (DGL). an Ada-like language including database que-
ries and formatting stateme,ts. The DOCGEN tool retrieves information that is stored
in the database and formats it into a LaTeX document.

2.2.4 Common User Interface

The SLCSE user interface provides w indowing capabilities available on DEC
VTl00-t-.pe terminals. The V'TIOO keypad is used to provide screen navigation and
selection. The SL(ESF user interface permits both menu and keyword operation. In

keyword mode, qualifiers are specified through a menu interface. Menu mode is the
recommended operational mode. The SLCSE provides the user with a mechanism for
adding windows and menus. This is done by using two software tools developed by
GRC-the WINNIE Windowing Package and the Menu Operations Organizer (MOO).
WINNIE supports the definition and manipulation of windows. MOO controls the
sequencing of windows.

2.2.5 Extensibility

There are three levels of tool integration to the SLCSE.

a. Integration of simple tools

Simple tools are ones having no qualifiers or parameters. Examples of simple
tools include a pretty printer, body stubber, and line counter. CASE tools having
their own menu systems may also be integrated in this manner.

b. Integration of User Interface (UI)-Conformant tools

These conformant tools are tools that use qualifiers or require customized
menus. Examples of tools requiring menus are the ALS/N ADAVAX compiler

and the NSWC BBoard. Some CASE tools, such as the Ada Test and Verifica-
tion System (ATVS). should be integrated with customized menus.

c. Integration of Database-Conformant tools

The SLCSE database by default supports the DOD-STD-2167A life-cycle model.
The database may be extended through the modification of existing subschemas
and through the definition of additional database subschemas (i.e., entities and
relationships) to support project-specific life-cycle models, methodologies, docu-
mentation standards, and tools. The integration of tools to the database requires
an in-depth knowledge of the database structure. This level of integration is
probably best left to GRC software engineers, although it has been done by oth-
ers. e.g., Draper Laboratory.

In addition to the levels of tool integration discussed above, the user interface may also

be tailored for individual users by resizing vindows, changing the menu item order,
and redefining the VT100 keypad.

2.2.6 Support for Multiple Languages

The SLCSE supports Ada and other programming languages commonly used by the
DoD. The SLCSE Version 3.9.2 contains an interface to the DEC Ada compilation sys-
tem and associated tools. The SLCSE can support any computer language tor which
there is a compiler that runs on VAX/VMS. The languages are supported by

6

integrating the appropriate compiler, linker, language-sensitive editor, and supporting
life-cycle tools into the SLCSE.

Additional languages that GRC has integrated into the SLCSE include FORTRAN,
COBOL, C, and JOVIAL J73. Other languages can be integrated into the SLCSE as
required.

2.2.7 Support for Multiple Projects

The SLCSE supports multiple projects over a network of computing resources. The

maximum number of projects supported by the SLCSE depends on the available disk
space and memory and how the VAX system parameters are set. Access to specific
tools may be limited by specific projects. Tool access is defined through the use of the
SLCSE Environment Manager (SEM).

2.2.8 SLCSE Toolset

This section lists and describes the tools included with the SLCSE Version 3.9.2.
Much of the information in this section was extracted directly from SLCSE tools infor-
mation provided by GRC (GRC, 1991).

The SLCSE toolset contains two kinds of tools-those developed specifically for the

SLCSE and those developed for other purposes. The tools developed specifically for
the SLCSE will be described first.

Tools Specific to the SLCSE

a. BaselinER - Supports interactive definition, modification, and reporting of con-
figurations and baselines (including all database elements used in the generation of a
formal document).

b. Design Tool - Supports interactive population of the Design Subschema.

c. DOCGEN 2167A - Generates formal documents from the contents of the

SLCSE project database for all DoD-STD-2167A Data Item Descriptions. The docu-
ments generated are listed below.

1. Computer Resource, Integrated Support Document

2. Computer Software Operator's Manual

3. Firmware Support Manual

4. Interface Design Document

5. Interface Requirements Specification

7

6. Software Design Document

7. Software Development Plan

8. Software Product Specification

9. Software Programmer's Manual

10. Software Requirements Specification

11. Software Test Description

12. Software Test Plan

13. Software Test Procedures

14. Software Test Report

15. Software User's Manual

16. System/Segment Design Document

17. System/Segment Specification

18. Version Description Document

d. DOCGENREPORT - Supports definition of customized reports from informa-
tion stored in the SLCSE database.

e. Mentor Import - Supports the import of requirements and design information
(created with Mentor Analyst/Realtime a 'b Tesign/Realtime tools) into the
SLCSE database.

f. MicroImport - Supports the import of project management information (created
with Macintosh-based Microplanner and More tools)

g. ModifyER - Supports graphical navigation of the SLCSE ER database and modi-
fication of its contents.

h. Problem Change Report Processor - Supports identification and tracking of soft-
ware problem reports through the use of interactive forms.

i. ReportER - Supports graphical navigation of the SLCSE Project database, selec-
tion of entities and relationships, and generation of reports describing the con-
tents of the database relative to the selected entities and relationships.

j. Requirements Tool - Supports interactive population of the SystemRequirements
and Software_Requirements Subschemas of the SLCSE Project database.

k. SDLCompiler - Translates Schema Definition Language (SDL) source code (a
specialized Ada-like language for specifying subschemas and the entities, rela-
tionships, and attributes that comprise them) into Structured Query Language

8

(SQL) statements that are interpreted by SMARTSTAR to create a low-level re-

lational implementation of the ER SLCSE database.

1. SDLConvert - Translates SDL into PROLOG for use by AnalyzER that per-

forms consistency analysis.

m. SEM - Supports the definition/modification of a site/company/organization envi-

ronment, and definition/modification of one or more software development pro-

jects within the larger environment.

a. Test Manager - Supports interactive population of the Test Subschema

o. VerifyER - Supports consistency checking on user-selected database entities, and

produces reports identifying any inconsistencies in relationships between the

selected entities.

The tools listed below are those developed for other purposes, but that are part of

the SLCSE toolset.

Government Furnished Software (GFS), Public Domain, and GRC Proprietary

a. ADL - The Ada Design Language tool supports text descriptions of software

design using a formal, Ada-like, specification language, and generation of
reports based on these specifications. ADL is geared toward the development of

Ada software.

b. ALICIA - Supports interactive navigation of the SLCSE database, identification

of entities for a proposed change, and review of estimated change impact on

database entities and relationships. The use of Alicia requires a workstation sup-

porting the Graphical Kernel System (GKS).

c. AMS - The Automated Measurement System tool supports the definition, collec-

tion, and reporting of quality metric information based on the RL Software

Quality Framework.

d. AnalyzER - Processes the PROLOG (created by the SDL_Convert companion

tool) and checks for consistency within the schema definitions (e.g., relation-

ships have both domains and ranges).

e. Kermit - Supports text and binary file transfer between different computers via
phone lines or network connections.

f. MOO - The Menu Operations Organizer defines the sequencing of windows.

MOO supports the definition of an interactive application's operational structure

and serves as a unifying mechatism connecting the interactive windows (con-

structed via WINNIE) with the user responses directing operation of the interac-

tive application. MOO was developed by GRC.

9

g. TeX/LaTeX - Companion products that support general-purpose text formatting
and printing (used by DOCGEN_2167A & DOCGENREPORT).

h. WINNIE - Supports interactive prototyping of window-oriented user interfaces for
VT100-compatible terminals, and provides the runtime window management
utilities used by the prototypes. It was developed by GRC.

Commercial software to be purchased for use with the SLCSE is discussed in
Section 2.3.

2.3 COMMERCIAL SOFTWARE TO BE PURCHASED

The SMARTSTAR relational database is required by the SLCSE and must be pur-
chased. The other software is optional and should only be purchased if needed for a
project.

SMARTSTAR - Interface layer between the SLCSE ER database and its underlying
hardware (i.e., Sharebase) or software (i.e., DEC Relational Database) relational imple-
mentations. A special SMARTSTAR license, for use only with the SLCSE, was pur-
chased by NOSC from GRC.

DEC Ada compiler - The compiler and associated tools are available from Digital
Equipment Corporation.

FORTRAN, COBOL compilers - These compilers are available from Digital Equip-
ment Corporation.

JOVIAL J73 compiler - The compiler is supported by Proprietary Software Systems.

Other VMS utilities and tools - Other tools and utilities bundled with VMS or
licensed through DEC or third party vendors (e.g., EDT, EVE, MAIL, LSE-ADA, LSE-
FORTRAN, LSE-COBOL, LSE-J73, MACRO).

2.4 HARDWARE REQUIREMENTS

The SLCSE Version 3.9.2, installed on the NOSC Code 411 VAX 3100, included
the SLCSE source code and the SLCSE toolset described in Section 2.2.8,
SMARTSTAR, and the DEC Ada compiler and associated tools. This installation
requires 97,770,520 bytes (190960 blocks) of disk storage space. The NOSC Code 411
VAX 3100 contains 16 megabytes of memory. GRC software engineers recommend
five megabytes memory as a base for the SLCSE and 4 additional megabytes for each
user.

2.5 CHARACTERISTICS OF THE FUTURE SLCSE

A 5-year contract for major enhancements and the products of the SLCSE was
awarded by RL to ISSI in August, 1991. Major enhancements are scheduled to be

10

completed by the end of August, 1993. The remaining 3 years are to provide user
support. ISSI refers to the future SLCSE as the Enhanced SLCSE (E-SLCSE). The
improvements to be made to the SLCSE are summarized in this section.

2.5.1 User Interface Enhancements

The user interface will be reimplemented to run on top of X Windows and Motif.
The existing user interface is VTl00-based. The X Window graphical window system,
which was developed by the Massachusetts Institute of Technology during the mid-to-
late 1980s, offers many advantages. These advantages include improved interoperability
because of the use of a client/server architecture across a network, the versatility and
flexibility in constructing menus, the use of X Windows by many tool vendors, the
ease in using X Window applications, availability of tools for X Window development,
support for graphics, as well as increased portability.

2.5.2 Repository Enhancements

The dependence on the commercial relational database, SMARTSTAR. will be

eliminated. The enhanced SLCSE will use the ANSI standard SQL as the RDBMS
interface layer to COTS RDBMS products. RDBMS products that currently support
SQL include Interbase, SQL server, Oracle, Ingres, Informix, Progress, RDB, and
Sybase. Other repository enhancements include the development of a graphical user
interface for the Schema Design Language (SDL) tool used with the database, the
addition of advanced object oriented features, the redesign of ALICIA to include a
repository browser, and others.

2.5.3 Tool Enhancements

Each existing SLCSE tool will be analyzed. Some will be reengineered. Some will
be ported to POSIX, and others will be replaced with an equivalent POSIX tool.

A full functionality desktop publishing package (e.g., Framemaker, Interleaf) will be
integrated into the SLCSE to allow users to create and update documents in a more
natural way than is provided by the existing 2167A documentation capability. Other
tools will be developed (e.g., Ada-based user interface builder, E-R editor/browser)

2.5.4 Tool Integration Enhancements

The SLCSE will be delivered with an Ada-based user interface builder for easily
constructing or modifying X Window and Motif-based user interfaces using a graphical
specification (WYSIWYG) paradigm with automatic Ada code generation of the final
interface.

11

2.5.5 Hosting to Additional Platforms

The enhanced SLCSE will be designed to execute on POSIX/X Windows/Ada work-
stations (e.g., Sun, Apollo, Hewlett-Packard) or a combination of POSIX/X Windows/
Ada workstations with a Digital Equipment Corporation (DEC) VAX/VMS back-end
system.

2.5.6 Product Plans

The products of the SLCSE include the development of a marketing strategy, estab-
lishment of SLCSE user group, preparation of a newsletter, initiation of a SLCSE
workshop, production of a commercial quality video describing the program, and other
plans.

Specific services provided to customers will include

" 1-800 telephone line technical service

" Professional product training

" On-site installation and support

" Consulting

" On-site demonstrations

* Regular updates and releases

" Others

The enhanced SLCSE will be provided to Government and DoD contractors free of

charge, as long as the user buys software support. Sites will be charged for training,
custom products, and special services according to commercial-practice fees.

12

3.0 SLCSE AS A PROJECT TOOL

3.1 SLCSE STRENGTHS

3.1.1 Tailoring of SLCSE Toolset

Probably the greatest strength of the SLCSE is the capability to tailor the SLCSE

toolset so it provides the tools required for a specific project. Those tools in the

SLCSE toolset that are not needed can be made invisible and inaccessible to a project.

More importantly, additional tools needed for a project may be integrated into the

SLCSE by users.

Tools a project manager might consider for integration are project-specific tools and

others needed but that are not in the SLCSE toolset, such as Ada reverse engineering

tools. Sometimes it may be desirable to integiate a tool that has the same or similar

functionality as an existing SLCSE tool. Users should be able to use a tool, from

within the SLCSE, that they have used extensively and like rather than be forced to

use the comparable one from the SLCSE toolset.

The capability to develop custom menus as part of the tool integration process is

also a valuable feature. It is easier for a user to execute a tool by filling in a menu
than by continually referring to a tool's user's guide.

NOSC has successfully tailored the SLCSE toolset. Tool integration is discussed in

more depth in section 4.0 and appendix B.

3.1.2 User Roles

Each person on a project has specific responsibilities. The responsibilities define a

person's role on the project. Usually the person's role and responsibilities are defined

implicitly, which allows the lines between roles to be blurred. The concept of "user

roles" from the STARS OCD explicitly defines the roles and their responsibilities.

The design decision by GRC and the Air Force to employ the concept of user roles

has increased the utility of the SLCSE. This is an attribute that production quality

SEEs should have. When employing the user-role concept each person on a project is

assigned one or more roles. Members of each role have access to a specific set of

tools. Limiting tool access helps reduce the occurrence of software disasters.

3.1.3 Ease of Learning

The SLCSE was easy to learn. The people who attended the SLCSE training at
NOSC had no difficulty learning the system or its user interface. Learning the intrica-

cies of some tools in the SLCSE toolset was more difficult.

13

3.1.4 Document Generation Capability

The document capability of the SLCSE allows the user to develop all documents
required by 2167A from within the environment. All of the information needed to auto-
matically generate the required document is contained within the SLCSE database,
making it much easier to generate these documents. This is an extremely powerful fea-
ture of the SLCSE.

3.1.5 Stability

The SLCSE is a stable system. During the 4 months of NOSC's investigation of the
SLCSE, no user caused the system to crash or have other downtime. As many as five

users used it simultaneously. All users felt the response time was adequate.

3.1.6 Tailoring of SLCSE Database

The SLCSE database can be tailored to support different entity relationships de-

pending on the needs of the project. Database tailoring is done outside of the SLCSE
by the database administrator. Tailoring is done by editing the schema definition files.

3.2 SOME SLCSE WEAKNESSES

3.2.1 User Interface

The main weakness of the SLCSE is its user interface. The user interface has a
number of features that should be fixed in the next version. The SLCSE provides a
number of excellent capabilities, but the user has to interact with the interface to reach
them. Most users will nnt use an environment with a difficult interface even though it
provides outstanding capabilities.

Among the user interface problems is no fast way to return to the top-level menu.
For example, when a user works down through four levels of menus and diagrams
using a document generation tool, each menu and diagram must be exited separately
before a new activity can be started.

Returning to the top level is even worse because the method of exiting each menu
varies. The top-level menu is exited by moving the cursor to the menu option EXIT
and then pressing the return key. Other menus are exited in a similar fashion only
DONE is the menu option. Still other menus are exited by typing a keypad 0. During
NOSC's use of the SLCSE, the wrong method was almost invariably the first method
tried.

In the tools menu, the user can move to a particular tool either by moving the cur-
sor up or down the list with the arrow keys or by typing the tool's number from the

14

list which moves the cursor directly to the tool. The files in the object menu are also
numbered. The numbers cannot be used to move quickly to the desired file, however.
Since the object menu can become lengthy, this would be a helpful capability.

Information messages from the tools are transmitted to the user by writing them in
a window of the SLCSE screen. Frequently, the messages are displayed for such a
short time the user is not sure whether they are error messages or normal completion
messages. For example, when using the ALS/N ADAVAX compiler the message
flashed by so quickly that a user could not tell whether the message was "Fatal Error
detected - compilation aborted" or "ADAVAX: Normal successful completion."

3.2.2 User's Manual

The SLCSE interface problems are exacerbated by not having a user's manual.
Usually, the only way to get help with problems is to call GRC. While GRC representa-
tives have always been helpful, calling them requires a maintenance agreement for
day-to-day use of the SLCSE. Most of the questions NOSC asked could have been
answered by a comprehensive user's manual.

The tool integration user's manual (GRC, 1989) is neither complete nor accurate. In
many ways this is more frustrating than having no manual. Both WINNIE and MOO
user's manuals (Cooper, 1986) and (Lamb, 1989) are also required to complete the
tool integration process. Even with all three manuals, help from experienced GRC per-
sonnel was required to complete integration of the BBoard tool into the SLCSE. GRC
provided the report, "SLCSE Site Specific Tool Integration" (GRC, 1990), that was far
more helpful in this process than all three of the user's manuals.

3.2.3 Error Messages

The SLCSE notifies the user when internal error conditions occur. These messages
frequently are not clear, which makes it difficult for the user to understand what is
wrong and decide how to correct them. The SLCSE On-The-Job-Training Manual
(GRC, 1991) provides an incomplete list of the error messages. However, a complete
list is not provided.

3.3 SUGGESTED ENHANCEMENTS TO SLCSE

Here are sueecsted enhancements to the SLCSE:

1. The ability to execute VAX/VMS commands from within the SI CSF There are
some VMS commands that can only be executed from outside of the SLCSE.
Executing them rcluires exiting the SLCSE. executing the command, and then
re-entering the SLCSE.

15

2. A common method of exiting menus. Section 3.2.1 discusses why this is a desir-

able feature.

3. A simple way to jump back to the top level menu. Section 3.2.1 discusses the

drawbacks of the current method.

4. The ability to display categories of tools. When a user has access to a number

of tools the user must traverse the entire list to find a particular tool, or memo-

rize the tool numbers used most frequently. The user should be given the ability

to display tools by categories, for example, VMS tools, Ada development tools,

etc.

5. Users need more help when they get error messages. The SLCSE error mes-

sages are not usually self-explanatory nor is there a manual containing an expla-

nation of the messages. More meaningful error messages and a manual contain-

ing all error messages with suggested actions would be very helpful.

6. The SLCSE installation process needs to be simplified. The current installation
process is so complex that only GRC can do it. A production quality SEE must

be installable by users or the on-site system administrator.

7. The ability to print the SLCSE screens is needed. Currently there is no way for

users of the SLCSE to capture screens for inclusion in their user documentation

and presentation materials. This feature is needed, for example, when preparing

documentation on how to use the customized menus for ALS/N tools.

8. The instructions for tool integration need to be simple, precise, and accurate

What is available is helpful, but it needs to be expanded and corrected. Cur-

rently the instructions are spread over a number of documents.

16

4.0 SLCSE TOOL INTEGRATION

Tool integration is the process of inserting tools into the SLCSE so they appear in
and may be accessed from the SLCSE tools menu. Tool integration is done under con-
figuration control. Only the SLCSE system manager or someone with system privileges
may add tools. The tool selection to be integrated is a management decision. Project-
specific and any other appropriate tools should be integrated.

The tool integration capability encourages use of appropriate tools by project per-
sonnel. This capability also allows users to build customized menus that simplify tool
use.

4.1 LEVELS OF TOOL INTEGRATION

The tool integration process varies depending on the level of tool integration. Three
levels based on how deeply the tool integrates into the SLCSE are simple tool integra-
tion, Ui-conformant tools, and database conformant tools.

4.1.1 Simple Tools

Simple tools do not contain qualifiers and parameters and do not require a setup
window. A setup window is a menu in which the user provides information needed to
run the tool. When tool integration is completed the tool name appears in the SLCSE
tools menu along with the other SLCSE tools. An example is Pretty Printer, a simple
tool, which has no qualifiers and requires no input prior to commencing operation.

In addition to ALS/N tools, NOSC integrated the following simple tools into the
SLCSE during the investigation:

1. Ada Primitive Order Compilation Order Tool (APRICOT)

2. Bit-Oriented Message Definer (BMD)

3. LGEN: A Language Generator Tool

4. I"ilc Chc-ker

5. Pretty Printer

6. Body Stubber

Tool descriptions are found in appendix D.

4.1.2 UI-Conformant Tools

Ul-conformant tools contain qualifiers or parameters and require a setup window
(customized menu) but do not access information from or provide information to the

17

SLCSE database. The SLCSE supports the development of these setup windows by pro-
viding two table-driven menu or window development tools, WINNIE and MOO. An
example is the ADAVAX compiler. At a minimum a UI-conformant tool requires a file
name be provided before execution commences. It usually has a number of qualifiers
set to provide optional results.

Customized menus help by allowing users to choose and invoke options that are
displayed within the menu. This capability means users will spend less time referring
to tool-user guides. The integration of tools with qualifiers and parameters is consider-
ably more work than integrating simple tools. In addition to using WINNIE and MOO
the user must write an Ada procedure that reads in the user specified data from the
customized menu and builds the appropriate DCL command. When tool integration is
completed the tool name appears in the SLCSE tools menu.

In addition to ALS/N tools, NOSC integrated the following UI-Conformant tools into

the SLCSE:

1. Electronic Bulletin Board (BBoard) BBoard

2. LEXGEN: A Lexical Analyzer Generator Tool

Tool descriptions are found in appendix D.

4.1.3 Database Conformant Tools

Database conformant tools interface directly with the SLCSE project databases.
Database conformant tools are usually built specifically for inclusion into the SLCSE
and were not considered during this study. An example is the ReportER, that is a
default tool of the SLCSE.

For the SEE prototypes task simple tools and those with qualifiers and parameters
were integrated. No tools were integrated to the database.

4.2 HIGH-LEVEL STEPS FOR TOOL INTEGRATION

Figiire 4-1 illustrates thc high-level steps followed to integrate a simple tool and a
UI-conformant tool. The figure is taken from the GRC report (1989). Detailed explana-
tions of the required steps are contained in appendix B. The steps for database confor-
mant tool integration will not be discussed.

18

START

S Define tool symbol

<
U.I.

YES

NO Define a setup window

- I

F Define MOO commands
T

F Write Ada procedure

T
FModify & compile Get-Command

I
FRelink SLCSE

tool name in SEM

I
Define tool parameters

Associate tool with role(s)

Modify Projects

FINISH

Figure 4-1. Tool integration process.

19

4.2.1 Integrating Simple Tools

The process of integrating a simple tool is a subset of the process for integrating a
UI-conformant tool (figure 4-1). The integrator needs to define a command alias to be
used as the tool symbol, for example, defining the alias BMD to be equivalent to the
command "run bind." The tool symbol is defined in one of the SLCSE system startup
command files. Then the tool must be added to the SLCSE using the SLCSE Environ-
ment Manager (SEM). This requires entering the tool symbol into the tools list in SEM
and answering questions about the way the tool runs. For example, does the tool out-
put to the screen or to a file, will it run in batch or interactive mode, etc. Then the
tool must be associated with the role or roles that will require access to tool. Finally,
the project(s) currently running undcr the SLCSE must be modified to recognize the

tool's existence.

4.2.2 Integrating UI-Conformant Tools

Integrating UI-conformant tools is a more difficult and time-consuming task than
integrating simple tools. This difficulty is because of the necessity to construct a setup
window. The setup window defines the required qualifiers and allows entry of any
required parameters. NOSC personnel defined the setup window for the BBoard tool.
The window selections field can be toggled to each possible BBoard action, i.e.. it can
take the values post. create, help, read, status, or garbage (collection). Figure 4-2
shows the setup windows for each. The contents of the setup window vary with the
value in the selection field. A brief description of the BBoard is provided in appendix
D. Constructing and interpreting the setup window requires the use of an Ada compiler
and three tools provided with the SLCSE.

First, the tool integrator must define either a global symbol or DCL command for
the tool. After the tool symbol is defined, the setup window must be constructed using
the WINNIE windowing tool written by GRC. Then MOO, also provided by GRC, must
be used to define the sequencing of responses within the setup window. Neither
WINNIE nor MOO commands are easy for the first-time user even with the users
manuals (Cooper. 1986 and Lamb, 1989). (Excerpts of the WINNIE and MOO com-

mands for the BBoard setup window are given in appendix B in figures B-4 and B-5.)
Next, an Ada procedure must be developed and compiled. This procedure takes the
information thC user provides through the setup window and creates the required com-
mand to be passed to the VMS operating system. The procedure which drives the exe-

cution of site-specific tools must also be modified and recompiled. Then. the integrator
must relink the SLCSE. Finally, the tool must be added to the SLCSE using the SEM.
This process is the same one followed when integrating a simple tool.

20

4.3 LESSONS LEARNED

The first time integrating either type of tool is difficult and nonintuitive. After the
first tool of a specific type (simple or Ul-conformant) has been integrated, repeating
the process is not particularly difficult. Integrating UI-conformant tools remains time-
consuming. For example, the first UI-conformant tool integrated by NOSC personnel
(BBoard) took approximately 34 hours of work. The second UI-conformant tool
required approximately 5 hours, while integrating simple tools takes less than an hour.

21

TESTING.MSG;l flBOMD STPProgramming

INVOKE St HELP DONE

INTERACTIVE

Selections POST

Bulletin Board Name see

Message FieNm testina.msg

m~essage expiration date EXPIRE Aug 31. 1991

Notify users of message NOTIFY runmi

Press the Keypad One key to toggle between options, use arrow keys to
navigate, or press Keypad C to return to the command bar.

TESTING.MSG;1 BBOARD SSTUP Programming

INVOKE SETUOP HELP DONE

INTERACTIVE9

Selections CREATE

Bulletin Board Name see /

0

Press the Keypad Onp key to toggle between options, use arrow keys to
navigate, or press Keypad 0 to return to the command bar.

Figure 4-2. BBoard setup window.

22

TESTING.MSG;l OBOAD SETUP Programming

INVOKE STPHELP DONE

INTERACTIVE

Selections HELP

Press the Keypad One key to toggle between opt~cns, use arrcw keys to
navigate, or press Keypad 0 to return to the ccrrrnand bar.

TESTING.MSG;l D2BOAP.D SETUP Programming

INVOKE SETUP HELP DONE

INTERACTIVE

Selections READ$

Bulletin Board Name see

Press the Keypad One key to toggle between options, use arrow keys to
navigate, or press Keypad 0 to return to the command bar.

Figure 4-2. BMoard setup window (continued).

23

TESTING.MSG;l MOA ir) SITUP Programming

INVOKE STUIP HELP DONE

INTERACTIVE

Selections STATUS

Bulletin Board Name see

Show detailed information FULL

Direct output to OUTPUT

Press the Keypad One key to toggle between options, use arrow keys to
navigate, or press Keypad 0 to return to the command bar.

TESTING.MSG;1 MARWSIT' Programm-7.

INVOKE SETUP HELP DONE

INTERACTIVE

Selections GARBAGE

Bulletin Board Name see

Show detailed information LOG

Direct output to PURGE

Press the Keypad One key to toggle between options, use arrow keys to
navigate, or press Keypad 0 to return to the command bar.

Figure 4-2. BBoard setup window (continued).

24

5.0 INTEGRATING ALS/N TOOLS

5.1 INTEGRATION

The integration of the ADAVAX compiler Version 4.3 and associated tools was
accomplished by following steps discussed in Section 4.0. The two ALS/N library man-
agement tools listed below were integrated into the SLCSE by following the steps for
simple tool integration described in Section 4.2.1. No setup windows were required.

a. CLIB - Command Interface

b. SLIB - Menu Screen Interface

The four tools shown below were integrated by following the steps for UI-
conformant tool integration described in Section 4.2.2.

a. ADAVAX - ADAVAX Compiler for the VAX/VMS Target

b. LNKVAX - Linker for the VAX Target

c. EXPVMS - Exporter to VAX/VMS Target

d. IMPVAX - Importer to VAX/VMS Target

5.2 ALS/N SETUP WINDOW DESCRIPTIONS AND USE

Figures 5-1 through 5-4 show the setup windows for ADAVAX, LNKVAX,
EXPVMS, and IMPVAX. These windows were created to provide all the options

described in the ALS/N reference handbook (NAVSEA, 1989). Each qualifier for these
four tools may be set on or off. Toggling between on and off is done by pressing key-
pad 1. After a tool is invoked and it completes, the user may examine error messages
and information pertaining to the options selected by pressing keypad 3.

ADAVAX Setup Window

Figure 5-1 shows the setup window for the ADAVAX compiler. The top screen of
the figure, third line from the top, shows the "INTERACTIVE" and "BATCH" compi-
lation capability. In the figure this option is set to "INTERACTIVE." When an interac-

tive or batch compilation completes successfully the following message is displayed on
the user's monitor:

ADAVAX : normal successful completion

The user must give the file name to compile. The remainder of the top screen
shows the listing control qualifiers that may be selected.

The bottom screen of Figure 5-1 shows the special processing qualifiers and the
first three of the special compilation unit qualifiers.

25

ADAVAX SETUP Programming

INVOKE SETUP HELP DONE

INTERACTIVE UPDATE WITH SELECTED OBJECT

Filename to Compile

Listing Control Options

Produce Symbol Attribute Listing NO ATTRIBUTE
Produce Diagnostic Summary Listing NODIAGNOSTICS
Produce Machine Code Listing NO MACHINE CODE
Include Diagnostics of Note Severity NO NOTES
Produce Ada Source Listing SOURCE
Produce Summary Diagnostics Listing NO SUMMARY
Produce Cross-Reference Listing NOCROSSREFERENCE
Include Private Specs in Listing PRIVATE

Press <Return> to advance to the Setup window, use arrow keys to navigate.

ADAVAX SETUP Programming

INVOKE SETUP HELP DONE

Special Processing Options

Provide Run-time Error Checking CHECKS
Generate Code if Warning Diagnostics CODE ON WARNING

Produce Container if Severity Permits CONTAINER GENERATION

Generate Debugger Symbols & Code DEBUG

Monitor Subprogram Execution Frequency NO MEASURE

Enable Global optimization NO OPTIMIZE
Provide Calling Sequence Traceback TRACEBACK

Special Compilation Unit Options

Activate All Compiler Options Below NOCOMPILERMAINT
Compile Generic Built-in Subprograms NOBISCOMPILE
Compile New ADARSL Package Spec NORSLCOMPILE /

Press the Keypad One key to toggle between options, use arrow keys to
navigate, or press Keypad 0 to return to the command bar.

Figure 5-1. ADAVAX setup window.

26

ADAVAX SETUP Programming

INVOKE SETUP HELP DONE

Compile New STANDARD Package NO STANDARD COMPILE

Compile New SYSTEM Package NO SYSTEM COMPILE

Press the Keypad One key to toggle between options, use arrow keys to

navigate, or press Keypad 0 to return to the command bar.

Figure 5-1. ADAVAX setup window (continued).

27

.LNTVAX SETUP Programming

INVOKE SETUP HELP DONE

INTERACTIVE

Main Subprogram

Output Container

Unit List Filename
Produce Unit Listing UNITS

Produce Symbol Listing SYMBOLS
Produce Elaboration Order Listing ELAB LIST

Special Processing Options

Produce Container for Debugging NODEBUG

Produce Container for Performance Measure NO MEASURE

Permit Partial Container Creation NO PARTIAL

Link All Referenced Units SEARCH

Press <Return> to advance to the Setup window, use arrow keys to navigate.

LNKVAX SETUP Programming

INVOKE SETUP HELP DONE

Maintenance Options

Propagate Linker Stack Dumps NO

Produce Functional Trace of Execution NO

Produce Trace of Data Transactions NO

Press the Keypad One key to toggle between options, use arrow keys to

navigate, or press Keypad 0 to return to the command bar.

Figure 5-2. LNKVAX setup window.

28

EXPVM4S SETUP Programming

INVOKE SETUP HELP DONE

INTERACTIVE

Linked Container __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Export Module _____________________________

Directive File _____________________________

Produce Program Sections Map Listing NOMAP
Produce Symbol Listing NOSYMBOLS

Special Processing Options

Report Elapsed CPU and Wall Clock Time NOACCOUNTING
Allow Use of Symbolic Debugger NODEBUG
Perform Frequency Analysis NO_-MEASURE
Produce Symbols List for Debugger NO DEBUGSYMBOLS

Press <Return> to advance to the Setup window, use arrow keys to navigate.

EXPVMS SETUP Programming

1NVuKE SETUP HELP DONE

Maintenance Opti;ons

Propaqate Exporter Stack Dumps NO
Produce Functional Trace of Executicn NO
Produce Trace of Data 7ransactions NO

Press the Keypad One key to toggle between options, use arrow keys to

navigate, or press Keypad 0 to return to the command bar.I

Fisare 5-3. F3XPVNIS setup wvindow.

29

IMPVAX SETUP Programming

INVOKE SETUP HELP DONE

INTERACTIVE

Import Module ___________________________

Output Container _________________ _______

Directive File _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Unit is a Package Body NOPACKAGE

Maintenance Options

Propagate Importer Stack Dumps NO
Produce Functional Trace of Execution NO
Produce Trace of Data Transactions NO

Press <Return> to advance to the Setup window, use arrow keys to navigate.

Figure 5-4. IMPVAX setup window.

30

Figure 5-1 (Continued) shows the remaining two special compilation unit qualifiers.

The three screens shown in Figure 5-1 are the ADAVAX setup window. In this

document three pictures are required to show all the qualifiers which are made visible
by scrolling.

LNKVAX Setup Window

Figure 5-2 shows the setup window for LNKVAX. In the top window, the first user
qualifier is the "INTERACTIVE" and "BATCH" capability. When an interactive or
batch link job completes successfully the following command is displayed on the user's
monitor:

LNKVAX : normal successful completion

When running LNKVAX the user provides the name of the main subprogram and

the output container. The unit list filename is only required when the main subprogram
is null. The user sets any of the LNKVAX qualifiers to on or off. These qualifiers
include three listings o,"'iicrs, four special processing qualifiers, and three mainte-
nance qualifiers.

EXPVMS Setlp Window

Figur. 5-3 shows the setup window for EXPVMS. The exporter may be executed
either in "INTERACTIVE" or "BATCH" mode. Upon successful completion an interac-
tive or batch execution the following message is displayed:

EXPVMS : normal successful completion

The user provides the name of the linked container and the export module (exe-
cLItable). The directive file is optional. Each EXPVMS qualifier may be set to on or
off. These qualifiers include two listings qualifiers. four special processing qualifiers,
and three maintenance qualifiers.

IMPVAX Setup Window

Figure 5-4 shows the setup window for IMPVAX. The importer may be executed in
either "INTERACTIVE" or "BATCH" mode. Upon successful completion of an interac-
tive or batch execution the following message is displayed:

IMPVAX : normal successful completion

In the setup window the user must give the name of the import module (file con-
taining the import module) and output container. The directive file must be provided
when the output container contains a package body. The directive file supplies an entry

31

point and reference information about the file being imported. Qualifiers include speci-
fying whether a unit is or is not a package body and three maintenance qualifiers.

Appendix C shows the four ALS/N tool setup window definitions using WINNIE,
the MOO commands for window sequencing, and the Ada procedures for interpreting
the setup windows.

32

6.0 RECOMMENDATIONS

The SLCSE is a proof-of-concept environment for improving the development proc-
ess for Navy software. The SLCSE must be improved so SLCSE is of the quality
required for Navy software development.

6.1 USER INTERFACE

Section 3.0 states most of the problems with the SLCSE are in the user interface.
ISSI needs to make the interface as easy to use as possible. Potential users will not use
the environment unless the interface is superb. We recommend that once an early UT
prototype is operational a human factors psychologist examine it to make recommenda-
tions for improvements. We have found this helpful at NOSC.

6.2 EXTENSIBILITY

One future goal of SLCSE should be to make SLCSE extensible. An environment
that can be extended easily is preferable to one that includes a multitude of tools but
is only extensible with extreme user effort. Future versions should have a strong capa-
bility for integrating tools, including the capability to create customized menus. This
capability must be provided to users. It is unsatisfactory for only the environment
developer to have the capability to integrate tools. The tool integration process needs to
be easier in the future SLCSE.

6.3 DOCUMENTATION

Future SLCSE documentation must be improved. We recommend users* guides, one
for tool integration, be written by personnel who are not members of the SLCSE devel-
opment team. People who are too close to the product tend to write instructions that
inadvertently assume the reader has the same knowledge. For example, key details
may be glossed over and the project jargon may not be explained. Users need an error
message manual that lists all error messages, explains the problem, and suggests
solutions.

6.4 E-SLCLSE AS NAVY C3 SOFTWARE DEVELOPMENT ENVIRONMENT

We recommend first, NOSC take an active role in the new Air Force procurement
by participating in reviews, attending demonstrations, and reviewing relevant docu-
ments. Members of the SEE Prototypes task can provide insight into needed enhance-
ments including the design of the new U1. This will help ensure the new SLCSE is of
the quality required by the Navy.

Second, if the enhanced SLCSE is of the production quality needed by the Navy,
we recommend that NOSC develop a SLCSE for Navy C3 software development. Sup-
port of this environment can include an interface to the ALS/N.

6.5 ADDITIONAL ON-LINE CAPABILITIES

We recommend the future SLCSE include an on-line user's guide and error mes-
sage manual accessible from within the SLCSE. When using windows the user can
then see the error message in one window and look it up in the manual in the other.

34

7.0 REFERENCES

Boehm, B. 1988. "A Spiral Model of Software Development and Enhancement," IEEE
Computer.

Cooper, D. 1986. WINNIE GRC Windowing Package RM-2563/2, General Research Cor-
poration, Santa Rarbara, CA.

General Research Corporation. 1989. "SLCSE Software User's Manual Vol. II, SLCSE
Environment Manager," Santa Barbara, CA.

General Research Corporation. 1990. "SLCSE Site Specific Tool Integration", Santa
Barbara, CA.

General Research Corporation. 1991. "Software Life-Cycle Support Environment
(SLCSE) On-the-Job Training Course, Volume II: User Orientation," Santa Bar-

bara, CA.

General Research Corporation. 1991. "Software Life-Cycle Support (SLCSE) Tools,"
list, Santa Barbara, CA.

International Software Systems Incorporated. 1991. "Proposal for the Software Life-
Cycle Support Environment (SLCSE) Enhancements and Demonstrations Program,"

Austin, TX.

Lamb, J. 1989. General Research Corporation, "Menu Operations Organizer (MOO)

Overview," Santa Barbara, CA.

Madden, L., K. Schumaker, and B. Meyers. 1989. "An Electronic Bulletin Board
(BBoard) Program." Technical Report 89-03, Naval Surface Weapons Center,

Dahlgren, VA.

Meyers, B., and A. Smith. 1988. "LGEN: A Language Generator Tool." Technical

Report 88-01, Naval Surface Weapons Center, Dahlgren, VA.

Mumm, R., and S. Parker. 1990. "BMD/Ada Bit-Oriented Message Definer." Technical
Report 1384, Naval Oceans Systems Center, San Diego, CA.

Naval Sea Systems Command. 1989. "Ada Language System/Navy Reference Hand-

book," NAVSEA #ALSN-HBK-PSE-REFHB, Version 3.0.

Smith, A., and B. Meyers. 1989. "LEXGEN: A Lexical Analyzer Generator Tool."
Technical Report 89-05, Naval Surface Weapons Center, Dahlgren. VA.

Software Technology for Adaptable Reliable (STARS) Joint Program Office. 1985.
"STARS-SEE Operational Concept Document (OCD)," Proposed Version 001.0.

8.0 BIBLIOGRAPHY

Cooper, D. 1989. "Addendum to RN-2563/2 WINNIE Windowing Package," General
Research Corporation, Santa Barbara, CA.

Baldwin, R., and D. Emery. 1991. "Technology Assessment of the Software Life-Cycle
Support Environment," Contract No. F19628-89-C-0001, MITRE Corporation.

C.S. Draper Labs, 555 Technology Square, Cambridge, Massachusetts. "Software
Design Document for the Mission Computer Operational Flight Program Computer
Software Configuration Item," Contract No. A12345-89-X-0000, Prepared for
Sacremento Air Logistics Center, NMETI, MacClellan AFB, CA.

OFP Program Development, Maintenance Support Section (MASHD), AISF Support
Bldg 1202 00-ALC, Hill Air Force Base. "Software Requirements Specification for
the RF/F-4 NWDS OFP Computer Software Configuration Item of the F-4 Weapon
Delivery System," Contract No. 654-26-0890, Prepared for Hill Logistics Center,
MAS/OO-ALC, Hill Air Force Base, UT.

Rome Laboratory, Griffiss Air Force Base, New Ye k. Statement of Work for Software
Life-Cycle Support Environment (SLCSE) EnhanL ments and Demonstration Pro-
gram, PR NOS. B-1-3321/B-1-3368, 21 Dec 90.

36

APPENDIX A: SLCSE INSTRUCTIONS FOR THE NOVICE

This appendix describes many basic operations needed when using the SLCSE. The
appendix is intended for the new and novice SLCSE user. Figure A-1 shows the top-
level SLCSE screen. The menu bar is the second window from the top. These instruc-
tions will frequently refer to this menu bar. It contains the primary choices the user

has the top level of the SLCSE. The choices are OBJECTS, TOOLS, SETTINGS,
HELP, and EXIT. While a selection in the menu bar is highlighted, pressing return will

either cause a pull down menu to appear for the user's next choice, i.e., OBJECTS or

TOOLS; or it will cause the SLCSE to perform that action, i.e., EXIT.

TESTING.MSG;l PO J2C: 8a, Programming

OB CTS' TOOLS SETTINGS HELP EXIT

Press the Up arrow to move to the Selected Object field, press <Return> to

select this item.

Figure A-I. Top-level screen of SLCSE.

Figure A-2 shows the top-level SLCSE screen with the Objects Menu pulled down.
Figure A-3 shows the Tools Menu pulled down. These menus are included to assist the
user when referring to the basic operations provided below.

A.1 BASIC OPERATIONS

A.I.1 Accessing Tools

1. Press right or left arrow until TOOLS in the menu bar is highlighted.
<return>.

A-I

TESTING.MSG;1 PRQJIC.T., SEX Programming

AOCT TOOLS SETTINGS HELP EXIT

K4PINOBJECT:FOLDER

1. A?_10_.ADA,*l

2. COCH.ADA;2
3. COCH_.ADA;2
4. DBG.ADA;l
5. DBG_.ADA;2
6. DEBUG.ADA;l

'7. DEBUG_.ADA;1
.

8. DEMO.;l
9. EXPIRE.MSG;1

10. FILENAMES.ADA;l

Press Return to select an item; press Gold-Gold-Return to move an Object to
another folder; or press Keypad 0 to move to the command bar.

Figure A-2. Top-level screen of SLCSE with Objects Menu pulled down.

TESTING.MSG;l PROJECT: SZE Programming

Wf .FTOOLS SETTINGS HELP EXIT

~z
TOOL MENU

1. ACS
2. ACSLINK
3. ADA
4. ADAVAX
5. ADDFILE
6. ADL
7. AMS
8. ANSANALYZE
9. ANALYZER

10. APRICOT

Press <Return> to select an item, use arrow keys to navigate, or press
Keypad 0 to move to the command bar.

Figure A-3. Top-level screen of SLCSE with Tools Menu pulled down,

A-2

2. In the Tool Menu arrow to desired tool (by pressing up and/or down arrow.)

3. If tool requires a filename, other parameter, or a qualifier; press PF1 (Gold
Key) and <return>. Otherwise <return>.

4. Read user's manual for tool being used to discover what the qualifiers mean,
what entries to use, and to answer any questions.

A.1.2 Importing Files Into SLCSE

Before using most SLCSE tools, the tool input file must first appear in the SLCSE's
OBJECT list. For the file to appear requires that it either be created in the SLCSE (by
copying or editing a file, or compiling, linking, or executing a tool) or be imported into
the SLCSE from elsewhere on the VMS system. The steps to import a file are

1. Arrow to TOOLS on the menu bar. <return>

2. Select IMPORT from the tool list.

3. Press PFI. <return>

4. <return> (on SETUP on the menu bar).

5. Type in the name (including the directory path) of the file to be imported.

6. <return>

7. Type in the name the file is to have in the SLCSE.

8. Press keypad 0.

9. <return> (on INVOKE in the menu bar).

10. Arrow to DONE on the menu bar. <return>

A.1.3 Moving Directly to a Given Tool

To move directly to a tool in the tools menu, enter the tool number, (shown to the
left of the tool name), using numbers across the top of keyboard. (See figure A-3.)

A.1.4 Moving from an Object in the Objects Menu to the Tools Menu

This operation is done repeatedly when using the SLCSE. The normal method of
executing a tool is to first select the file from the Objects Menu that is to be input to
the tool.

Press PF right arrow.

A.1.5 Moving from a Tool in the Tools Menu to the Objects Menu

Press PHl (Gold Key) left arrow.

A-3

A.1.6 Scrolling Menus

To scroll in the Object Menu, Tool Menu, and Settings Menu, press keypad 8. Press
keypad 4 (forward) or 5 (backward) to change scrolling directions.

A.1.7 Selecting an Object from the Objects Menu

Move up or down the the Objects Menu by pressing the up or dovw 1 arrows. Once
the desired object is highlighted, <return>.

A.1.8 Submitting Batch Jobs

Some tools allow jobs to be submitted to the batch queue. Do this in the Tool
Setup Window by toggling (press keypad 1) from INTERACTIVE to BATCH.

A completion message is generated by the SLCSE when the batch job completes.
No audible signal is generated.

A.1.9 Viewing Messages Generated by Tool

If executed interactively, press keypad 3.

If executed in batch mode, press PF1 (Gold Key) keypad 3.

A.1.10 VMS-like Tools

The following tools perform the same operation as the VMS commands of the same
name. These tools use a Setup window.

1. COPY

2. DELETE - see explanation below.

3. DIRECTORY

4. EDT - the VMS editor

5. MAIL

6. PURGE - see explanation below.

7. RENAME

8. TYPE

A.1.10.1 Deleting Files. To delete a specific file, select the file from the OBJECTS
menu, then select DELETE from the TOOLS menu.

A-4

To delete more than one file, press PF1 and <return> on the DELETE tool in the
TOOLS Menu, then, if necessary, use wild cards in the file name. The user can be
prompted before each file is deleted to make sure it is alright to delete the file. This
inquiry can be disabled if the user chooses.

A.1.10.2 Purging Files. To purge a specific file, type the filename into the purge win-
dow displayed when the PURGE tool is selected. To purge more than one filename, or
the entire directory, use wild cards in the file name. The PURGE tool deletes all but
"Purge Version Limit" copies of files. "Purge Version Limit" is set using the SET-
TINGS menu.

A.2 SLCSE MANAGER OPERATIONS

All of the following actions require access to the SLCSE manager account. Logging
into that account will be the unmentioned first step for each action.

A.2.1 Defining Roles

The SLCSE requires tools be assigned to the user roles (e.g., system analysis, pro-
ject management). The process is called defining the roles. Roles are defined by using
the SLCSE Environment Manager and following the steps given below.

1. Type: sem. <return>. (This will bring up the screen shown in figure A-4.)

Welcome to the

SLCSE Environment Manager

Version 3.9.2

Select current operation:

1. Modify the existing enviroament '

2. Create a new project
3. Modify an existing project
4. Delete a project
5. Exit Environment Manager

(C) Copyright 1991 General Research Corporation
A 1: Rights Reserved

Figure A-4. SEM top-level screen.

A-5

2. Highlight choice "1. Modify Existing Environment." <return> and <return>

3. In the menu bar, arrow to ROLES. <return> (This will bring up the screen
shown in figure A-5.)

SLCSE ENVIRONMENT MODIFICATION

TOOLS ROLES PERSONNEL HELP DONE

ROLES

Acquisition Management ACS

Configuration Management ACSLINK

MCCS Engineer ADA
PDSS ADAVAX

Programming ADDFILE
Project Administration ADL

Project Management ALICIA

Quality Assurance AMS
Secretarial AMSANALYZE

SLCSE Installation ANALYZER
Software Analysis APRICOT
Software Integration BASELINER

To select default tools available for the role, press <Return>. To unselect
a tool press <Return> again on that item. When all defaults have been

selected press the Keypad 0 key.

Figure A-5. SEM when assigning tools to roles.

4. Arrow to desired role. <return>

5. Arrow to a tool required for the role. <return>

6. Repeat last step until required .tools are highlighted.

7. If any tool is highlighted that is not required, arrow to it. <return>

8. Repeat last step until only required tools are highlighted.

9. Type: Keypad 0.

10. Repeat steps 4 - 9 until all required roles have been defined.

11. Type: Keypad 0.

12. Arrow to DONE. <return>, <return>, and <return>

13. Arrow to choice "5. Exit..." <return>

A-6

A.2.2 Adding Personnel to Environment

Before a person can be assigned to a project under SLCSE, they must first be
added to the personnel list under the environment. When a person is added to the en-
vironment, SLCSE will verify their user name exists on the system before creating the

files internally required by the SLCSF. Users are added by using the SLCSE Environ-
ment Manager and following the steps given below.

1. Type: sem (This will display the screen shown in Figure A-4.)

2. Highlight choice "1. Modify Existing Environment". <return> and <return>.

3. Arrow to PERSONNEL in the menu bar. <return> (See figure A-6.)

SLCSE ENVIRONM",NT MODIFICATION

TOOLS ROLES PERSONNEL HELP DONE

PERSON VAX USER NAME

MIJMM. HANS MUMM

OLLERTON. BOB OLLERTON
PARKER. SALLY SPARKER
SLCrSF SLCSE
TRAN. NU NTRAN

Enter the name of a person available at this site and press <Return>.
Enter the name last name first, as in 'Washington, George'. Press

the Keypad 0 key when all names and VAX User Names have been entered.

Figure A-6. SEM screen for adding personnel to the SLCSE environment.

4. Type the person's name (last name first) on the highlighted blank line in the
first column. Type their user name in the second column. (See figure A-6.)

5. Type: Keypad 0.

6. Arrow to DONE. <return>, <return> and <return>.

7. Arrow to choice "5. Exit..." <return>

A-7

A.2.3 Creating a Project

Before any work can be done on a project using the SLCSE, the project must first
be created in SLCSE. That is, the SLCSE must be notified of the project's existence,
the project's users, the database to be used, the roles the users can take, and the tools
that each user is allowed to use. To create a project follow the steps shown below.

1. The SLCSE manager must obtain special system privileges.

Type: set process/priv=all

2. Run the Database Administrator to create the project database.

Type: dba <return>

(Results in the screen shown in figure A-7.)

Database

Administration Tool

Select operation:

1. C -eate*.' a Dfa base" i
2. Modify a Database
3. Delete a Database
4. Unload a Database
5. Load a Database
6. Modify Text Hierarchy
7. Exit DBA Tool

(C) Copyright 1990 General Research Corporation
All Rights Reserved

Figure A-7. First DBA tool.

3. Complete database administration information. (See figures A-8 through
A-11.)

a. Arrow to choice "1. Create a Database." <return> (Results in screen
shown in figure A-8.)

A-8

Create Database Checklist

Mandatory operations:

2. Compile Schema
3. Create Database

Optional operations:

4. Load DGL Data Files
5. Load Narrative Text
6. Create Metaschema Tables
7. Exit Checklist Menu

This option allows you to define the database name, disk, type, and
number of text attribute hierarchies. This step must be completed before
other options are selected.

Figure A-8. First database creation screen.

Define Database

Database Naine: Database Disk:

Number of Text Attribute Hierarchies:_J Database Type: RDB

Text 1:

CaNCzL INVOKE

Figure A-9. Database definition screen.

A-9

Compile Schema

SDL File: SLCSE$CURRENT SDL:BASELINE.SDL

Listing: YES SDF: YES

Metaschema: YES SQL: YES

Semantics: YES Statistics: YES

CANCL INVOKE

Figure A-10. Creating a schema DBA screen.

Create Database Checklist

Mandatory operations;

DONE L. Define Database
DONE 2. Compile Schema

3. Create Database

Create Database

SQL File; SEESDISK: ISLCSE.RYAN.SQLIJASELIHE.SQL

can=L INVOKE

This option allows you to create an Mb database and create the relational
tables.

Figure A-11. Final screen of mandatory database creation steps.

b. Arrow to choice "1. Define Database." <return> (Results in screen
shown in figure A-9.) Fill in the screen following the instructions
below.

A-10

Field Explanation of field

1. Enter name for database. <return>

2. Enter name of disk where database will reside. <return>

3. Type: 1 (for the number of text attribute hierarchies). <return>

4. Leave database type as RDB. (Currently the DBA Tool only
supports the creation of RDB databases.)

5. Enter name of disk (for text 1). Usually matches the one given in
step 2 as disk where database resides. <return>

Arrow to Invoke. <return>
(Results in a batch job submission.)

c. After the batch job has completed, arrow to choice "2. Compile
Schema." (See figure A-8.) <return>
(Results in screen shown in figure A-10.)

1. <return>

2. For Metaschema, use Keypad 1 to toggle to "NO" (unless the
ALICIA tool will be used on the project). All other fields should
keep their default values.

3. Arrow to Invoke. <return>.

(This results in a batch job submission.)

d. After the batch job has completed arrow to choice "3. Create Data-
base." (See figure A-8.) <return>
(Results in screen shown in figure A-11.)

1. <return>

2. Arrow to Invoke. <return>

e. Arrow to choice "7. Exit Checklist Menu." (See figure A-8.)
<return>

f. Arrow to choice "7. Exit DBA Tool." (See figure A-7.) <return>

4. Run the SLCSE Environment Manager.

a. Type: sem (See figure A-4.)
b. Highlight choice "2. Create Project." <return>

c. Enter name of project. <return>

d. Arrow to NETWORK. <return>

A-1 1

e. Complete network form. (See figure A-12.)

1. Enter name of database used when working with + , above.

2. Enter name of disk used when working with dba tool above.

3. Enter device and directory path of the SLCSE CM director;.

4. Enter device and directory path of the SLc(.' SUF directory.

5. Type: 2 (for SDF purge limit)

6. Type: Keypad 0

SLCSE PROJECT CREAT:ON TESTING

NETWORK ROLES RULES PERSONNEL HELP DONE

DATABASE AND DIRECTORY SPECIFICATION

Database Name.: _ _ __ _ _ Database Disk:

Configuration Management Directory:

Software Development Folder Directory:

Software Development Folder Purge Limit:._0

Enter the name of the database (no file extension). For example, 'BASELINE'
or 'MY DATABASE'. Press keypad 0 to exit the window and save the data, or press
gold up arrow to exit window and not save the data.

Figure A-12. SEMs network definition form.

f. Define roles.

1. Arrow to ROLES. <return>

2. Arrow to desired role. <return>

3. Arrow to a tool required for the role. <return>

4. Repeat last step until are required tools are highlighted.

5. If any tools are highlighted that are not required, arrow to it.
<return>

A-12

6. Repeat last step until only required tools are highlighted.

7. Type: Keypad 0.

8. Repeat from "Arrow to desire role" until all required roles have
been defined.

9. Type: Keypad 0.

g. Assign personnel to project following steps as given in section A.2.4
below.

h. Arrow to DONE. <return>, <return> and <return>.

i. Arrow to choice "5. Exit..." <return>

A.2.4 Adding Personnel to a Project

Personnel required for a project must be assigned to that project within the SLCSE.
First, make sure the required personnel have been added to the SLCSE (see section
A.2.2), then use the SLCSE Environment Manager to add them to the project.

1. Type: sem

2. Arrow to choice "3 Modify an Existing Project." <return>

(See figure A-4.)

3. Arrow to the desired project. <return>

4. Arrow to PERSONNEL in the menu bar. <return>

5. Arrow to desired user name. Press PF1 and <return>

(A user name may be unselected by pressing <return> again.)

6. Arrow to role this person will have on project . <return>

7. Repeat last step for all roles this person will hold.

8. Type: Keypad 0 twice.

9. Arrow to DONE. <return>, <return> and <return>.

10. Arrow to choice "5. Exit Environment Manager" <return>
(See figure A-4.)

A.2.5 Modif'ing the Toolset Available to a User Role

The SLCSE may be tailored at the project level by changing the collection of tools
that a user role may access. This type of tailoring requires the use of the SLCSE Envi-
ronment Manager.

A-13

1. Type: sem. <return>

2. Arrow to choice "3. Modify an Existing Project." <return>
(See figure A-4.)

3. Arrow to project to be tailored. <return>

4. Arrow to ROLES in the menu bar. <return>
(During this process the screen will resemble figure A-13.)

SLCSE PROJECT MODIFICATION SEE

NETWORK ROLES RULES PERSONNEL HELP DONE

ROLES DEFAULT TOOLS DEFAULT SUBSCHEMAS

Acquisition Management ACS ATVS

Configurat ion Management ACSLINK CONFIGURATIONMANAGEMENT

MCCS Engineer ADA CONTRACT

PDSS ADAVAX DESIGN

Programming ADDFILE ENVIRONMENT

Project Administration ADL MMSANDCMS

Project Management ALICIA PROJECTMANAGEMENT

Quality Assurance AMS QUES

Secretarial AMSANALYZE SOFTWAREPRODUCTEVALUATION

SLCSE Installation ANALYZER SOFTWAREREQUIREMENT

Software Analysis APRICOT SYSTEMREQUIREMENT

Software Integration BASELINER TEST

To select default tools available for the role, press <Return>. To unselect

a tool press <Return> again on that item. Press PFl Right Arrow to select

sub-schemas. When all defaults have been selected press the Keypad 0 key.

Figure A-13. Modifying roles' default tools for a project.

5. Add tools as described in Defining Roles (see section A.2.1).

6. Delete default tools as described in Defining Roles.

7. Type: Keypad 0 twice.

8. Arrow to Done, <return>, <return>, and <return>

9. Arrow to choice "5. Exit Environment Manager" <return>

A.2.6 Modifying the Toolset Available to a User

If a specific user needs access to a tool not allowed within the user's role follow

the steps below. Also, follow them when a specific user is not to have access to a tool

that is allowed for their role.

A-14

1. Type: sem. <return>

2. Arrow to choice "3. Modify an Existing Project." <return>

(See figure A-4.)

3. Arrow to project to be tailored. <return>

4. Arrow to PERSONNEL in the menu bar. <return>

5. Arrow to person's name. Press PF1 and <return>

6. Arrow to the role to be modified and press PF1 and <return>

7. Arrow to the tool to be added or deleted. Highlight or un-highlight by press-

ing <return>. (Highlighted means the user will have access to it.)

8. Repeat last step, until person's role tool set is correct.

9. Type: Keypad 0 three times.

1 0. Arrow to DONE. <return>, <return> and <return>.

11. Arrow to choice "5. Exit Environment Manager" <return>

A.3 OTHER OPERATIONS

A.3.1 Making Hard Copies of Screens

To generate copies of the screens from a PC, use the PC as VT100 and do Control-

Print Screen. To print the extra characters displayed on the screen (other than the

ASCII character set) to a laser printer the symbol set for these characters must be

used. Refer to your printer manual for instructions on how to select the symbol set.

To generate copies of the screens from a Mac, use the Mac as a VT100 and use

the Screen Selection function on the File menu of most terminal programs. NOTE:

This may not generate the graphics portion of the screens correctly.

X-15

APPENDIX B: DETAILED STEPS FOR TOOL INTEGRATION

B.1 INTEGRATING SIMPLE TOOLS

A simple tool is any tool that has no qualifiers and either takes no parameters or

prompts the user for the parameters. The major steps in this section follow the process

shown in figure 4-1. The titles of the rectangles in figure 4-1 (for integrating non-UI-

conformant tools) correspond to the titles of this section (B.1.1 through B.1.5). The

user must first login to the SLCSE manager's account. Throughout these instructions

"toolcall" is used as a place holder for the name of the tool being integrated. For

example, if the tool JUMBO is being integrated, then everywhere the instructions say

"tool-call" enter "JUMBO."

B.1.1 Define Tool Symbol

The tool symbol can be defined in the SLCSE setup command file

(slcsesetup.com), the SLCSE startup command file (sys$manager:slcse_startup.com),

or in the system login command file (sys$startup:sylogin). If the tool symbol is defined

in the sylogin.com, then users can use the tool symbol to run the tool whether or not

they are using the SLCSE, even if the user doesn't have access to the SLCSE. If the

tool symbol is defined in slcse_setup.com or slcse startup.com, it can only be used to

run the tool by users with access to the SLCSE.

To define the tool symbol in the file slcse_setup.com, follow the steps given below.

1. Type: -dit [slcselslcse_setup.com

2. Add line: S Toolcall :== run Idirectorypath]tool

3. Exit and save file

Editing the sys$managcr:slcse startup.com file requires system privileges and

should probably be lone by the System Administrator. If the System Administrator

grants the user system privileges to define the tool symbol in the file sysSman-

ager:slcse_startup.com, follow the steps given below.

1. Type: Edit svsSmanager:slcsestartup.com

2. Acid line: S Toolcall :== run idirectorypathItool

3. Exit and save file

Editing the sysSstartup:sylogin.com file requires system privileges and should prob-

ably be done by the System Administrator. If the System Administrator grants the user

system privileges to define the tool symbol in the file sysSstartup:sylogin.com. follow

the steps given below.

B-i

1. Type: Edit sys$startup:sylogin.com

2. Add line: $ Toolcall :== run [directory_pathltool

3. Exit and save fi,t

The SLCSE Environment Manager is used in steps B.1.2 through B.1.5.

B.1.2 Enter Tool Name In SEM

This entering is accomplished by following the steps listed below.

1. At prompt, type: sem

2. Highlight selection "1. Modify the Existing Environment," <return>.

(See figure A-4.)

3. Return on environment name

4. Highlight "TOOLS" in menu bar, <return>.

(See figure A-5.)

5. On blank line type: toolcall.
(See figure B-1.)

SLCSE ENVIRONMENT MODIFICATION

ROLES PERSONNEL HELP DONE

ACS

ACS LINK
ADA
ADA-VAX
ADD FILE

ADL
ALICIA
AMS

AMS ANALYZE

ANALYZER

Press <Return> on a tool name to make it unavailable; and again to make it

available; press PFI <Return> to move to tool definition form, and keypad '0'

to signal completion. To delete a tool, press keypad '-' and unselect it.

Figure B-i. Screen as it appears before adding a tool.

B-2

NOTE: Toolcall in this step should match the one defined as the tool symbol in
step B.2.1.

6. Press PF1 and <return>
This will bring up the tool definition form.

B.1.3 Define Tool Parameters

The tool parameters are defined by completing the tool invocation data form shown
in figure B-2. Below is a list of the fields in this form and an explanation of how to
complete each field. The numbers in figure B-2 correspond with the numbers used in
the instructions below.

3

SLCSE E I IONIENT MO I FICATION

Tool invocation data fo 4 4: =S

Enter setup window ID, if an3

Is there an ada procedure to n e? NO

Invoke via TOOLER process? YES A ailable in KEYWORD mode only? NO

Clear screen before invocation? YES Repaint screen after invocation? YES

Invocation mode: INTERACTIVEONLY Direct output to: SCREEN

Display completion st us message? NO Number of files requi *d: -_

Press Keypad [> to exit window

En~er the WINNIE wirdow number of t e setup form window ass iated ith
this tool. If ther is no setup wi dow for this tool then cave t is
field blank.

7

8
19

Figure B-2. Tool invocation data form for simple tool.

B-3

1. <return>
(A simple tool has no setup window and the first field is blank.)

2. Field should be "NO," toggle (Keypad 1) if necessary. <return>
(A simple tool never requires an Ada procedure.)

3. Field should be "YES," toggle if necessary. <return>

4. Field should be "NO," toggle if necessary. <return>

5. If tool will produce output to screen, toggle to "YES," otherwise toggle to
"NO." <return>

6. If last field was "YES," then toggle to "YES," otherwise toggle to "NO."
<return>

7. If tool will require user interaction before running, toggle to "INTERAC-
TIVEONLY." If tool will always be run as a batch job, toggle to
"BATCHONLY." Otherwise, toggle to "BATCHORINTERACTIVE."
<return>

8. If it's possible to use the tool interactively, toggle to "SCREEN," otherwise
toggle to "OUTPUTFILE." <return>

9. If it's possible to use the tool interactively, toggle to "NO," otherwise toggle
to "YES." <return>

10. Should show a "0." If not enter a "0." <return>

11. Type: Keypad 0.

The form shown in figure B-2 is completed for a simple tool that produces output
to the screen and can only be used interactively.

B.1.4 Associate Tool With Role(s)

Refer to figure A-5 when performing the steps given below.

1. Highlight "ROLES" in the mcnu bar. <return>

2. Select role that will use Tool-call. Highlight chosen role. <return>

3. liighlight Toolcall in the default tools list. <return>

4. Type: Keypad 0.

5. If more than one role will use Toolcall. repeat the previous three actions.

6. Type: Keypad 0.

7. Htighlight "DONE." <return>

B-4

8. <return> in response to both questions.

B.1.5 Modify Projects

1. Highlight "3. Modify existing projects." <return>

(See figure A-4.)

2. Highlight project to be modified. <return> and <return>

3. Modify personnel by doing the actions listed below.

a. Highlight "PERSONNEL" in the menu bar. <return>

b. Highlight person who will use Toolcall. Type: PF1 and <return>

c. Highlight role the person will be using Tool call in. Type: PH1 and
<return>

d. Verify that Toolcall is in reverse video, If it's not, highlight it. <return>

e. Type: Keypad 0 twice.

f. If more than one person on project will be using the tool, repeat actions
B through E.

g. Type: Keypad 0.

h. flighlight "DONE." <return>

i. Type "Y" in response to both questions.

4. Itiehlieht "5. Exit the Environment Manager." <return>

B.2 INTEGRATING TOOLS WITH QUALIFIERS

Throughout these instructions "tool call" is used as a place holder for the name of
the tool being integrated. To integrate tools the user must be logged into the SI.CSE
Manager's Account. The steps in this section follow the order shown in figure 4-1.

B.2.1 Define Tool Symbol

A DCL command must be created and included in the DC!. table for tools with
qualifiers. These actions require system privileges and should be taken only by the Sys-

tem Administrator.

B.2.2 Define A Setup Windoi

This section describes the steps to follow to define setup windows. The BBoard is
used as an example.

13-5

B.2.2.1 Determine Tool Parameters and Qualifiers. The user determines the tool

parameters and qualifiers by examining the tool user's manual. In a well-written user's
manual this information is clearly stated.

B.2.2.2 Design the Window Layout. The following should be considered

1. Can tool be used only as a batch job, only interactively, or both?

2. If the tool uses a file name input, and the request for the file name is the

first fill-in field on the screen, the user can choose to update it with the

selected object, otherwise the user can not.

3. Should fields be fill-in or toggle fields? Toggle usually works best with quali-

fiers and fill-in best with parameters.

4. Do the qualifiers require parameters? For example, if EXPIRE is a qualifier

it usually requires a date be given as a parameter.

B.2.2.3 Define WINNIE Commands. In this section, first some relevant WINNIE defi-

nitions will be given. Then an explanation of the BBoard WINNIE commands is pro-

vided. The BBoard represents a typical tool with qualifiers that a user might wish to
integrate into the SLCSE. Finally, the steps for constructing the WINNIE commands

will be explained.

The WINNIE definitions for all SLCSE Command Executive windows are defined in
the file SLCSESUI:CE WIN.ASC. These definitions are in window number order in

this file. The window definitions arc free format, i.e., there may be a varying number

of spaces between data items.

B.2.2.3.1 WINNIE Definitions. The definition of terms is provided before going into a

detailed explanation.

Field - A field is a piece of information contained in a setup window. A field is
needed for executing a tool. WINNIE supports fill-in fields and toggle fields. A fill-in

field is one where the user enters characters from the keyboard. A toggle field is one

where the user makes a selection from a default set of values.

Field Number - This is an integer number that uniquely defines a field within a

window.

Invisible Field - This is a field that is not initially displayed in the setup window

upon lool invocation. This field is not displayed until the MOO commands change its

status to visible.

Protected Field - In WINNIE all fields that can be toggled must be protected. A

protected field is one whose text value can not be edited by the user.

Toggle Number - A number indicating the order (i.e., which element in an enu-

meration set) in which default text will be displayed.

B-6

Visible Field - This is a field that is initially displayed in the setup window upon

tool invocation.

Window - Rectangular regions on a monitor screen. They may have a frame (bor-

der). The first screen shown in figure 4-2, for example, consists of four windows.

These windows are the title window (top), the menu bar (below the title window), the

setup window, and the prompt window (bottom).

Window Identification Number - A number that uniquely identifies each window in

the SLCSE. Numbers may range from 1 to 400. These window ID numbers are also

used by MOO.

B.2.2.3.2 BBoard Example. Figure B-3 contains the WINNIE commands required to con-

struct the BBoard setup window (figure 4-2). Figure B-3 will be referred to repeatedly

in this section. The WINNIE commands the user must change when creating a setup

window will be explained in detail. Those commands that typically do not change will

only be discussed at high level. The user who wishes to learn more about WINNIE

than is provided here should refer to (Cooper, 1986). Additional information that a

user may need for setup window, but that is not covered by this example, is also pro-

vided.

The WINNIE BBoard commands given in figure B-3 will be explained and referred

to using the circled numbers. The numbers below correspond to the circled numbers.

(1) Each window definition begins with the window statement. This statement

indicates that the BBoard setup window number is 324. This window begins

in column 1 and extends to column SO. The bottom row of the window is 21

and the top row is 5.

(2) These four commands stay the same for all tool setup windows. They define

the frame around the window, the location of the scroll bar, the layout of

the keypad. and give the form number.

(3) This prompt statement occurs before any field statements: therefore, the

fields defined after this default prompt statement will inherit this prompt.

The prompt may be redefined for a particular field by defining another

prompt within the field definition. These commands define the two-line

default prompt appearing at the bottom of the setup window (figure 4-2).

The first line of the prompt appears in Window 3 beginning in line 1. The

second line of the prompt begins in Window 3, line 2.

(4) These three lines define the characteristics of Field 35. SLCSE Field 35 is

generally used for interactive or batch job submission. The first number on

the field statement is the field number, followed by the line and column of

the field starting position. and the field width. This is followed by the video

B- 7

O 'bl WINDOW 324 1 80 21 5
FRAME VIDEO "PLAIN"
SCROLL BAR ON INSIDE RIGHT
KEYSET 6
FORM 1
PROMPT 3 1 " Press the Keypad One key to toggle between options, use

arrow keys to"
PROMPT 3 2" navigate, or press Keypad 0 to return to the command bar."

O b {FIELD 35 1 5 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "INTERACTIVE" 1
LINK UPON DOWN TO FIELD 1

FIELD 1 3 33 7 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "READ" 1
DEFAULT "CREATE" 2

O- ~ DEFAULT "HELP" 3
DEFAULT "POST" 4
DEFAULT "STATUS" 5
DEFAULT "GARBAGE" 6
LABEL 3 5 "Selections" "PLAIN" "BOLD"
SELECT FIRST

FIELD 2 5 33 39 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 5 5 "Bulletin Board Name" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of the bulletin board"

FIELD 3 7 33 39 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 7 5 "Message File Name" "PLAIN" "BOLD"
PROMPT 3 1 " Enter message file name"
INVISIBLE

FIELD 4 9 33 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "EXPIRE" 1
DEFAULT "NOEXPIRE" 2
LABEL 9 5 "Message expiration date" "PLAIN" "BOLD"
INVISIBLE

FIELD 5 9 55 22 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 9 5 "Message expiration date" "PLAIN" "BOLD"
PROMPT 3 1 " Enter message expiration date"
INVISIBLE

FIELD 6 11 33 6 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOTIFY" 1
DEFAULT" "2
LABEL 11 5 "Notify users of message" "PLAIN" "BOLD"
INVISIBLE

FIELD 7 11 55 22 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEl 11 5 "Notify users of message" "PLAIN" "BOLD"
PROMPT 3 1 " Enter list of user names"
INVISIBLE

FIELD 8 7 33 4 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "FULL" 1
DEFAULT" "2
LABEL 7 5 "Show detailed information" "PLAIN" "BOLD"
INVISIBLE

Figure B-3. BBoard setup window definitions using WINNIE.

B-8

FIELD 9 9 33 6 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "SCREEN" 1
DEFAULT "OUTPUT"2
LABEL 9 5 "Direct output to " "PLAIN" "BOLD"
INVISIBLE

FIELD 10 9 55 22 "UNDERLINE" "REVERSE UNDERLINE BOLD"
PROMPT 3 1 " Enter output file name"
LABEL 9 5 "Direct output to" "PLAIN" "BOLD"
INVISIBLE

FIELD 11 7 33 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "LOG" 1
DEFAULT " " 2
LABEL 7 5 "Show detailed information" "PLAIN" "BOLD"
INVISIBLE

FIELD 12 9 33 5 "PLAIN" "REVERSE BOLD' "PLAIN" PROTECT
DEFAULT "PURGE" 1
DEFAULT " " 2
LABEL 9 5 "Direct output to" "PLAIN" "BOLD"
INVISIBLE

Figure B-3. BBoard setup window definitions using WINNIE

(continued).

characteristic of how the field should look when the cursor is not on the
field, the video characteristic of the field when the cursor is on the field, the
video characteristic of the field after it has been selected (user pressed

return and cursor has moved off field), and PROTECT which means the
field can not be changed by the user.

The second line is the field default statement. It contains the default text
which is displayed in the setup window and the toggle number. The BBoard
may only be run interactively, thus there is only one field default statement.

The third line instructs the WINNIE program to move the cursor to the Field
1 after the user presses return. In this example this command is not needed.
If the "UPDATE WITH SELECTED OBJECT" field was present in this win-

dow and located on the same line of the window as Field 35, then WINNIE
would move the cursor to it by default. The "LINK UPON DOWN TO
FIELD 1" statement instructs WINNIE to move the cursor to Field 1 after

the user presses return.

WINNIE. by default, positions the cursor on the top left field in the window.
When the user presses return. \VINNIE moves the cursor to the next field on

the same line (to the right). If there are no fields on the same line, WINNIE
moves the cursor down to the next field.

B-9

(5) These nine lines define the characteristics of Field 1. It begins in line 3, col-
umn 33 and has a width of 7 characters. When the cursor is not on the field
it will be displayed "PLAIN" video. When the cursor is on the field it will be
in "REVERSE BOLD." Then when selected it will be "PLAIN" again. It is
protected.

The six field-default statements define the text that is displayed when the

user toggles through the BBoard options.

The next line is the field-label statement. It defines a label for this field. The
label "selections" is defined to appear in line 3, column 5. When the cursor
is not positioned on the field, it will be displayed in "PLAIN" video. When
the cursor is positioned on the field, it will appear in "BOLD."

The select-first statement tells the cursor to be positioned on this field when
the window is first entered.

(6) These four lines define the characteristics of Field 3. Only the fourth line,
the invisible field statement, has not been explained. This statement says
that the field will not be visible when the BBoard window is initially dis-
played. The window will become visible when MOO commands change its
status. The remaining fields in figure B-3 are filled in a similar manner.

Field 500 is frequently used to define SLCSE setup windows, but that did not

appear in the BBoard example. This field is used to automatically insert the selected
object name in the setup window.

EXAMPLE:

FIELD 500 1 43 33 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT

DEFAULT "UPDATE WITH SELECTED OBJECT" 1

DEFAULT "DON'T UPDATE WITH SELECTED OBJECT" 2

If the field is set to the first default option, thei, the SLCSE uses the file(s) (the
user can select more than one file) selected by the user to automatically complete the
first fill-in field. If the user toggles the field contents to the second default option, then
the user must complete the fill-in field manually.

B.2.2.3.2 Building WINNIE Commands In Gencral.

1. Determine the window identification number for the tool. Find a window
number that does not currently eNist in the CEWIN.ASC file. and use it.

2. Copy an existing window that is similar to the desired window for the new
tool.

3. Paste the copy into the proper place in the file, windows are in numerical
order. (Numerical order is used for readability; WINNIE does not require it.)

B-10

4. Chanoe window number to the new one.

5. If the tool can only be used in only batch or only in interactive mode,

change Field 35 to reflect this.

6. If tool can not use selected object as first fill-in parameter, change Field 500
to reflect this.

7. Actual creation of the fields for the window is tool dependent. However,

there are some guidelines. (Refer to figures B-3 and C-1 through C-4.)

* With the exception of Fields 35 and 500, fields are usually in numerical

order within a window definition.

* Labels are positioned to the left of the corresponding field in the
window.

0 In toggle fields, all possible choices must be labeled as DEFAULT and
followed by a number. The choices will be toggled through in numerical
order.

* In toggle fields, on the line that begins FIELD the last word should
always be PROTECT.

* It is easier to write the required Ada code later, if the toggle values are
actual qualifier values. For example, SYMBOLS or NOSYMBOLS.

* In fill-in fields, the FIELD line should not include the word PROTECT.

" If a fill-in field is only used when a toggle field has a specific value.
then the fill-in field can be invisible most of the time.

" Prompts, that pertain to the field that the cursor is on, appear in the
prompt wvindo%% (sinall window at the bottom of the scr sen).

* Son-&s relevant window identification numbers are
Title window 101
Nlenu bar 102
Tool setup \window (user specifies number)
Prompt \\indow 3

B.2.2.4 Create SI,CSESUI:CE _WIN.BIN. Create a binary file by following the steps

Uiacn bclo\v.

1. At DCL prompt. typc: x\innie

T~ pe: 0 (i.e.. the letter '0', not zero)

3. l\ pe: SI ('StLSt.l:(T !\\IN.,.\S(C

l -1 1

4. Type: Q

5. Select "SAVE BINARY"

6. Type: SLCSESUI:CEWIN.BIN

B.2.3 Define MOO Commands

1. Determine when fields will be visible in the setup window. This is a matter
of the tool integrator's preference: all of the fields can be visible at all
times, or some fields may be invisible until they are required. Two questions
that should be considered are

" Is the usage of some fields dependent on the contents of other fields to
generate the correct command? For example, in the BBoard setup
window (figure 4-2), Field 5 (the fill-in field for the expiration date) is
only required if Field 4 is toggled to the value EXPIRE; when Field 4 is
toggled to the value NOEXPIRE, Field 5 is unnecessary.

" If one field is visible, should another field be invisible? Does making
one field visible, require another field to be visible also?

2. Edit SLCSESUI:CEMOO.ASC. (Figure B-4 contains the MOO commands
written for the BBoard 8etup window. It will be used as an example through-
out the instructions for this step.)

NOTE: The window and field numbers used in the MOO commands are those
defined in SLCSESUI:CEWIN.ASC during step B.2.2. For example, the WINNIE com-
mands for the BBoard setup window defined its window number as 324, and that is the
window number used for it throughout this step.

In figure B-4, the shaded area marked 1 shows the entries made in
SLCSESUI.CEMOO.ASC for the instructions given in steps A through E.
(Only the portions of Window 20's MOO commands that deal with the
BBoard are shown, since the complete commands are very long.)

a. Move the cursor to the commands for Window 20. These commands
consist of two main case statements. An entry for the new tool,
Tool_call, must be added to each case statement. If the user presses
return and all required parameters have been specified, then the
selected tool gets executed. If any required parameters are not specified,
then the tool setup window is displayed and the tool is not executed. If
the user presses Gold key return, then the tool setup window is dis-
played. These commands arc executed when the setup window is
displayed. These commands clear the current vindow from the screen
and becin drawing the setup windo\v corresponding to the tool the user
hige hliihted.

13-12

MOO file for Command Executive Windows

Window 20 is Tools Window for all roles
IF WINDOW = 20 AND FIELD = 0 THEN UPON... CRET=STAY,
CODE PARSEINVOKE,
CASE OF (TEXT),

CASE ("BBOARD"),
CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,
END CASE,

STATUS(8) = STAY, CODE PARSEONLY,
CASE OF (TEXT),

CASE ("BBOARD"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,

END CASE.

I Window 200 is the Command (KEYWORD) Mode window.
Status (22) means User has used Up arrow
Status (23) means User has used Down arrow
Status (44) means User has used Gold Up arrow

IF WINDOW = 200 AND FIELD = 1 THEN UPON STATUS(22) = CODE
RECALLPREVIOUS;
STATUS(23) = CODE RECALL_NEXT;
STATUS(44) = CODE RECALLALL, GOTO 199;
CRET= CODE PARSEINVOKE,
CASE OF (TEXT),

CASE ("BBOARD"),
CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,
END CASE,

END CASE;
STATUS(8) = CODE PARSEONLY,
CASE OF (TEXT),

CASE ("BBOARD"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,

END CASE.

Fih-urc 1,-4. MOO commands for BBoard.

B_-1S

O! Window 324 is the BBoard Setup WindowOf IF WINDOW = 324 AND FIELD = 2 3 5 78 10 11 1235
THEN UPON TAB=GO BACK 102, FIELD 1, VIS 324.

IF WINDOW = 324 AND FIELD = 1 THEN UPON CRET=CASE OF (TEXT),
CASE ("READ"), FVIS 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12, FIELD 2,O { CASE ("CREATE"), FVIS 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12, FIELD 2,O -{ CASE ("POST"), FVIS 324 2, FVIS 324 3, FVIS 324 4, FVIS 324 6, FINV 324 5,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12, FIELD 2,

CASE ("STATUS"), FVIS 324 2, FVIS 324 8, FViS 324 9,
FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6, FINV 324 7,
FINV 324 10, FINV 324 11, FINV 324 12, FIELD 2,O k { CASE ("HELP"), FINV 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12, FIELD 1,

CASE ("GARBAGE"), FVIS 324 2, FVIS 324 11, FVIS 324 12,
FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6, FINV 324 7,
FINV 324 8, FINV 324 9, FINV 324 10, FIELD 2,

END CASE;
TAB=CASE OF (TEXT),

CASE ("READ"), FVIS 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,

FINV 324 12,
CASE ("CREATE"), FVIS 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12,

CASE ("POST"), FVIS 324 2, FVIS 324 3, FVIS 324 4, FVIS 324 6, FINV 324 5,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11, FINV 324 12,

CASE ("STATUS"), FVIS 324 2, FVIS 324 8, FVIS 324 9,
FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6, FINV 324 7,
FINV 324 10, FINV 324 11, FINV 324 12,

.- k { CASE ("HELP"), FINV 324 2, FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6,
FINV 324 7, FINV 324 8, FINV 324 9, FINV 324 10, FINV 324 11,
FINV 324 12,

CASE ("GARBAGE"), FVIS 324 2, FVIS 324 11, FVIS 324 12,
FINV 324 3, FINV 324 4, FINV 324 5, FINV 324 6, FINV 324 7,
FINV 324 8, FINV 324 9, FINV 324 10,

END CASE,
GO BACK 102, FIELD 1, VIS 324.

Figure B-4. MOO commands for BBoard (continued).

B-14

IF WINDOW = 324 AND FIELD = 4 THEN UPON CRET=CASE OF (TEXT),
CASE ("NOEXPIRE"), FINV 324 5, FIELD 6,
CASE (-EXPIRE-), FVIS 324 5, FIELD 5,

END CASE;
& 1 TAB = CASE OF (TEXT),

CASE ("NOEXPIRE"), FINV 324 5,
CASE ("EXPIRE"), FVIS 324 5,
END CASE, GO BACK 102, FIELD 1, VIS 324.

IF WINDOW = 324 AND FIELD = 6 THEN UPON CRET=CASE OF (TEXT),
CASE ("NOTIFY"), FVIS 324 7, FIELD 7,
CASE (""), FINV 324 7, FIELD 1,
END CASE;

TAB = CASE OF (TEXT),
CASE ("NOTIFY"), FVIS 324 7,
CASE (""), FINV 324 7,
END CASE, GO BACK 102, FIELD 1, VIS 324.

IF WINDOW = 324 AND FIELD = 9 THEN UPON CRET=CASE OF (TEXT),
CASE ("SCREEN"), FINV 324 10, FIELD 1,
CASE ("OUTPUT"), FVS 324 10, FIELD 10,
END CASE;

TAB = CASE OF (TEXT),
CASE ("SCREEN"), FINV 324 10,
CASE ("OUTPUT"), FVIS 324 10,
END CASE, GO BACK 102, FIELD 1, VIS 324.

Figure B-4. MOO commands for BBOARD (continued).

b. Position the cursor on the line immediately after the statement, "IF
WINDOW= 20 ... CASE OF (TEXT).".

c. Add the lines:

CASE ("TOOLCALL"),
CASE OF (CIECK 2),

CASE (1), INV 99. V1S 101, ADV 102. ADV CHECK 1,
END CASE:

d. Position the cursor on the line immediately after the statement
"(STATUS 8) ... CASE OF (TEXT),". (Status 8 indicates that the user

pressed Gold key return.)

e. Add the line:
CASE ("fOOL,_C,-ALL"). INV 99, VIS 101 CH-ECK 1, ADV 102.
FIELD 2.

In figure 13-4. the shaded area marked 2 shows the entries made in

SLCSESLI.CFE MOO ASC for tile instructions given in steps F through
J. (Onlv the portions of \\ indow 200's MOO commands that deal with
the B13oard are shoxkn. since the complete commands are verv lone.)

8-15

f. Move to the commands for Window 200. These commands also consist
of two main case statements. These commands assure the correct
response if the SLCSE is being used in keyword mode. Entries need to

be made for ToolCall, even if the tool can not be interactively
executed in keyword mode, since all tools integrated into the SLCSE
can be initially invoked in keyword mode.

g. Position the cursor on the line immediately after the set of statements

that begin, "IF WINDOW = 200 ..." and ends with "CASE OF

(TEXT),".

h Add the lines:
CASE ("TOOL_CALL"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE;

I . Position the cursor on the line immediately after the statement
"(STATUS 8) ... CASE OF (TEXT),".

j. Add the line:

CASE ("TOOLCALL"), INV 99, VIS 101 CHECK 1, ADV 102,
FIELD 2

k. Create the specific MOO commands for the new setup window.

NOTE: A few frequently used MOO commands are explained here. If more
detailed explanations are required refer to Lamb (1989). (Throughout these explana-
tions, x and v are integers.)

* VIS x makes window x visible.

* INV x makes window x invisible.

F FVIS x y makes field y in window x visible.

* FINV x v makes field y in window x invisible.

* CRET is a carriage return, i.e.. the statement "UPON
CRET..." means upon the user entering a carriage
return, do whatever follows.

* CODE name returns name to the calling program. which takes the
appropriate action based on the value of name.

FI-LD x -moves the cursor to field x.

* TEXT reads the text tinder the cursor.

B-1

" GO BACK x returns cursor to window x.

* RETURN returns the cursor to the previous window

a. Position cursor where new window's instructions are to be added. The com-
mands appear in window numbet order.

b. Add a comment, explaining which tool these commands correspond to. Com-
ments are delimited with a "!". The comment for the BBoard is "! Window

324 is the BBoard Setup Window." (See 3 in figure B-4 continued.)

c. Are there any fields in the setup window that do not affect the visibility or

ordering of other fields? All fill-in fields and some toggleable fields will fall

into this category. These fields will follow the default action when a carriage
return is entered (advancing to the next visible field), therefore, no statement

is required. \When the user enters a Tab or Keypad 0 the cursor will move to
the menu bar. (In the SLCSE setup windows the TAB and Keypad 0 are con-
sidered identical. Entering either causes the actions defined for the TAB to
be taken.) A statement is required to cause the cursor to go back to window
102 Field 1 (the INVOKE field of the setup window's menu bar). An if-then

statement will be required for this action. All of these fields can be listed in

one statement.

EXAMPLE: In the BBoard setup window. Fields 2, 3. 5, 7, 8, 10, 11, 12,
and 35 have no effect on the visibility of other fields in the window. Field 2,
as an example, is the entry field for the name of the bulletin board. There-
fore, if the screen is showing Window 324 and the cursor is in any of those
fields and the user presses TAB, the cursor goes back to Window 102 Field
1. (See 4 in figure B-4.)

d. If Field 500 was used in the setup window, then the statement below must
be entered for the window. (Field 500 is a standard field in the SLCSE that
can be toggled between "Update with Selected Object" and "Don't Update
with Selected Object".) This field serves as a flag that indicates whether or
not to use the object the user has selected from the Object Menu of the
SL.CSE, and then position the cursor in Field 1 (INVOKE) of the setup win-
dow's menu bar. BBoard does not include Field 500, but if it did, the code
in figure B-4 would need to include the statement below. The string
-MODIFYUSE OBJECT" is passed back to the calling program, where

action is taken to update the file entry field (usually Field 1) based on the
setting of either "UPDATE..." or "'DON'T

IF \\ l\FDOW = 324 AND FI-LD 500 THE N UPON TAB = CODE
MIODIFY USEOBJECT, GO BACK 102, FIELD 1, VIS 324:
CR[[= CODE NIODIF:Y USEOBJECT.

B- 17

Notice that the window the cursor is in (324 in this example) is specifically
left visible (by the command VIS 324). Any setup window that uses Field
500 will require this statement (with the correct window number) in its MOO

commands.

e. If a field is toggleable and its value affects the visibility or ordering of
another field in the setup window, then a statement must be created to
assure the correct action is taken. It will be an if-then statement, with the
"then" portion consisting of two case statements. One case statement will
give commands for actions to take if the user enters a carriage return. The

other case statement gives commands for actions taken if a TAB is entered.

The if-then statement will have the following syntax.
IF WqINDOW = AND FIELD = THEN UPON CRET

CASE OF (TEXT),

CA-E ("value") FVIS x y, ... FINV x z, FIELD

CASE... FIELD

END CASE;

TAB = CASE OF (TEXT),

CASE ("value") FVIS x y, ... FINV x z,

CP SE.

E::D CASE,

GO BACK 102, FIELD 1, VIS

If t a cursor is in the correct window and field and the user enters a car-
riag return, then TEXT reads the value contained in the field and executes
the 'orresponding instructions from the case statement. The instructions used
with a carriage return always include a specific explanation specifying where
to i 3sition the cursor. Similarly, if the user enters a TAB, the function
TE'.T evaluates the fields value and the corresponding instruction is exe-
cute t. In the case of a TAB, however, the cursor alvavs returns to Field 1
of t,,e menu bar and leaves setup window visible. With the exception of the
FIEI D instruction in the cairiage return case statement's instructions, the
instrictions for a given entry in both case statements are identical. For
example, the instructions given for Field 1 of the BBoard. value HELP are
identical except for the addition of the instruction "FIELD 1.- (See 5 and 6
in figure B-4.)

Each ,alue the field can take. must have an entry in the case statement. The
instruction for each possible value. defines the visibiity of all the fields
affected by the contents of the field. For example. Field 1 of the BBoard

B,- 1S

window affects all fields except Fields 1 and 35. When writing the instruc-
tion, assume all the affected fields are in the wrong state; i.e., visible when
they should be invisible, or vice versa.

EXAMPLE: The BBoard has six main possible actions, (1) READ from a
bulletin board, (2) CREATE a bulletin board, (3) POST a message to a bul-
letin board, (4) find the STATUS of a bulletin board, (5) provide HELP on
the BBoard command, and (6) do GARBAGE collection on a bulletin board.
Field 1 of the BBoard setup window is a toggleable field with six possible
values corresponding to those actions. Each action has its own required set
of parameters and qualifiers. Which of the window's other fields are visible
in the window, depends on the value of Field 1. For example, HELP takes
no qualifiers or parameters and, therefore, has no additional fields. CREATE
requires one parameter, the name of the bulletin board being created. So,
the value CREATE in Field 1 requires one additional visible field. POST
requires the name of the bulletin board and the name of the file containing
the message to be posted. It also has two qualifiers, EXPIRE/NOEXPIRE and
NOTIFY. So, if Field 1 has the value POST four additional fields need to
become visible. (The first three screens shown in figure 4-2 are the setup
window, with POST. CREATE, and HELP in Field 1.)

When Field I is HELP, Fields 2 through 12 are invisible. When a carriage
return is entered, the cursor stays on Field 1. (See figure B-4, numbers 5
and 6 for the actual instructions included for Field 1, value HELP.)

\When Field I is CREATE, Field 2 is visible and Fields 3 through 12 are
invisible. \\'hen a carriage return is entered, the cursor advances to Field 2.
(See figure 1,-4, numbers 7 and 8 for the actual instructions included for
Field 1. valuc CRE-\TE:..)

\\hen lI-id I is POST. Fields 2, 3. 4. and 6 are visible; while 5 and 7
throIh 1I arc in, ,ible. \\hen a return is entered while in Field 1 with the
\aluc '() . the .Liror i adanced to Field 2. (The resulting statements are

marked and I0 in ficurC B-4.)

I \.\\1II I In the lBoard 'CILup window, if Field 4 is toggled to EXPIRE.
then I 1cth e\riration date) must be made visible, and the cursor
ad\ an~ct I I, Id 5 If Field 4 is NOEXPIRE, then Field 5 is invisible and
the ,.r,, l dnkeCs t1 ICILd 0. So. a statement must be included in the
\I()() .tmn~and, to arrane the correct action. Field 4 affects the visibility
of -i Id 5 ,,nl%. o that i, thc onl\ field included in the instruction list. (The

o,.mmnd i, numhcr 11 in fi Cure B-4.)

I,_ 1 (,)

3. Create SLCSESUI:CEMOO.BIN.

0 At prompt, type: CaMOODIR:MOOBIN SLCSESUJI:CEMOO.ASC

4. Copy SLCSESUi:CEWlN.BIN to personal project directories.

* Each person who can work in the SLCSE, has a directory for each
project he/she is assigned to. For each directory type:
COPY SLCSESUI:CEWIN.BIN diskname:[persondir.project_dirl

B.2.4 Write Ada Procedure

Develop an Ada procedure to create a string which contains the command to
run the tool. For example, if the tool is the ADAVAX compiler, the string being
created might be "ADAVAX/SOURCE filename." Figure B-5 contains the
INVOK'_B BOARD.ADA procedure which will be used as an example throughout
this step.

1. Type: set def 13 \SEROOT:ITOOL.SITESPECIFICI

2. Type: copy INVOKE_SAMPLE_TOOI,.ADA INVOKE tool call.ADA

3. FEdit INVOKE tool cal.ADA

The basic required steps are described below.

NOTES:

S)uring execution of this procedure the current window is the setup window
for tool call.

" A package, WINNIE, is provided. WINNIE provides a procedure named
READ. which reads a specified field in the current window. The field is
specified by the field number defined in step B.2.2.

A A package called TOOL SUPPORT pro ides a procedure. PARSE FILE-
N,A\M:, that checks to see if the filename the user has entered is legal and if
it exists in the user's current SLCSE work space.

" An exception has already been defined for use if the specified file does not
exist.

" WINDOW_ ID is a pointer to the current window, i.e., the setup window.
COMIAND is the string being produced. the one that invokes the tool.
COML\NID I.FN is the length of COMMAND. BATCHJOB lets the SLCSE
know w hether the tool is to be run in batch or interactive mode.

FILFS_ MISSING is 0 if no parameters arc missing. otherwvise it contains the
field number where the required parameter should have been specified.

1-20

-- >>>>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: INVOKEBBOARD

-- OVERVIEW: This procedure reads the WINNIE setup window for the bboard
- tool. The appropriate DCL command is built; this reflects
- the parameters and qualifiers as specified in the WINNIE
- setup window.

-- FIELDS: Field 1 - Action to be taken
- Field 2 - Name of bulletin board
- Field 3 - Name of file containing message
- Field 4 - Is message to be posted with an expiration date?
- Field 5 - Expiration date
- Field 6 - Notify users that message has been posted?
- Field 7 - List of users to be notified.
- Field 8 - Full status of bulletin board?
- Field 9 - Output status to screen or file?
- Field 10 - Name of output file
- Field 11 - Keep log of messages deleted during garbage

collection?
- Field 12 - Purge additional files while doing garbage

collection?

-- RAISES: If no bulletin board is specified, an exception is
- raised and control returns to the calling procedure.
- If no file is specified, or the the file specified does
- not exist, an exception is raised and control returns to
- the calling procedure.
- If message expiration is specified, and no expiration
- date is given, an exception is raised and control returns
- to the calling procedure.
- If status is to be output to a file and no file name is
- specified, an exception is raised and control returns to
- the calling procedure.

-- CALLS: Called by SITE SPECIFIC.GETCOMMAND

- Calls WINNIE.read,
- TOOLSU PPORT parsefile name
- MESSAGEDISPLAY.display in window

-- PARAMETERS: WINDOW ID TYPE -- Tool setup window id
- COMMAND -- DCL command returned
- COMMAND LEN -- Length of DCL command
- BATCH JOB -- True if batch invocation, else False
- FILES MISSING -- 0 if all required parameters are

specified else, field number where
required parameter should be specified.

with TOOL SUPPORT, WINNIE, MESSAGE DISPLAY

1--iurc [lB-5. Tool invocation proccdure for BBoard setup window.

1- 11

use WINNIE;

procedure INVOKEBBOARD (WINDOWID in out WINNIE.WINDOWIDTYPE;
COMMAND in out STRING;
COMMANDLEN in out NATURAL;
BATCHJOB in out BOOLEAN;
FILESMISSING in out NATURAL) is

TEXT STRING (1 ..255); - Text read from WINNIE.READ
TEXTLENGTH INTEGER; -- Length of text read from WINNIE.READ
FILENAME STRING (1 .255); -- Parsed filename input
FILELENGTH INTEGER; -- Length of parsed filename
FILEFOUND BOOLEAN; -- Whether file input exists
ACTION STRING (1 .255); -- Name of main action to be taken on board
ACTIONLENGTH INTEGER; -- Length of action name
BOARD STRING (1..255); -- Name of bulletin board
BOARDLENGTH INTEGER; -- Length of bulletin board
TEMP LENGTH INTEGER; -- Temporary counter of command length
NOFILEFOUND exception; -- File not specified or non-existant
NOBOARDFOUND exception; -- Bulletin board not specified
NODATE_FOUND exception; -- Expiration date not specified
NOOUTFILEFOUND exception; -- Output file not specified

begin

-- Assume all files required are specified
FILESMISSING:= 0;

Start assigning DCL command string and length
COMMANDLEN:= 6; -- (length of tool string)
COMMAND (1..COMMANDLEN) "BBOARD";
TEMPLENGTH:= COMMANDLEN;

Obtain initial bboard command
WINNIE. READ (FIELD => 1,

INWINDOW => WINDOWID,
PUTTEXTIN => ACTION,
LENGTH_IN => ACTIONLENGTH);

if ACTION (1 4) = "HELP" then

COMMANDLEN:= COMMANDLEN + 5;
COMMAND (TEMPLENGTH+1. COMMAND_LEN):= "/HELP";
TEMPLENGTH:= COMMANDLEN:

else

-- Get the board name
WINNIE READ (FIELD => 2,

INWINDOW => WINDOWID,
PUT_TEXTIN => BOARD,
LENGTHIN => BOARDLENGTH),

-- If no board is specified, display message and return to calling procedure
if BOARD LENGTH = 0 then

Fi1urc3-. Tool inocation proccClurc for BBoard setup windov (continued).

B-22

raise NOBOARDFOUND;

end if;

BATCHJOB:= False;

-- If text is READ then the default of BBOARD is invoked
if ACTION (1..4) = "READ" then

COMMANDLEN:= COMMANDLEN + I + BOARDLENGTH;
COMMAND (TEMP_LENGTH+I ..COMMAND_LEN) := ""& BOARD (1..BOARD_LENGTH);
TEMPLENGTH:= COMMAND_LEN;

else
COMMANDLEN := COMMANDLEN + 1 + ACTIONLENGTH;
COMMAND (TEMPLENGTH+1..COMMANDLEN):= "/" & ACTION

(l..ACTIONLENGTH);
TEMPLENGTH := COMMANDLEN;

end if;

-- Post a Message to the bulletin board?
if ACTION (1.4) = "POST" then

-- Obtain name of file containing message to be posted
WINNIE.READ (FIELD => 3,

IN WINDOW => WINDOW_ID,
PUT_TEXTIN => FILENAME,
LENGTHIN => FILELENGTH);

if FILELENGTH = 0 then
raise NOFILEFOUND;

end if;

WINNIE.READ (FIELD => 4,
IN WINDOW => WINDOWID,
PUT_TEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

-- If EXPIRE select then find out the date of message expiration
if TEXT (1 .6) = "EXPIRE" then

WINNIE.READ (FIELD => 5,
IN WINDOW => WINDOWID,
PUT TEXT IN => TEXT,
LENGTH_IN- => TEXTLENGTH);

if TEXT LENGTH = 0 then
raise NODATEFOUND

end if:

COMMANDLEN:= COMMAND LEN + 10 + TEXTLENGTH;
COMMAND (TEMP_LENGTH+I COMMAND_LEN) = "/EXPIRE="' &
TEXT (1 TEXTLENGTH) & --..
TEMP LENG[H COMMANDLEN,

end if:

Figurc B-5. Tool invocation procedurC for BBoard setup wincdov (continued).

11-23

WINNIE.READ (FIELD => 6,
INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

-- Notify users that message is posted?
if TEXT (1 ..6) "NOTIFY" then

COMMANDLEN:= COMMANDLEN + 7;
COMMAND (TEMPLENGTH+1 ..COMMAND_LEN) :="/NOTIFY";
TEMP_LENGTH := COMMANDLEN;

WINNIE.READ (FIELD => 7,
INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXTLENGTH /= 0 then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (TEMP_LENGTH+1 ..COMMAND_LEN) := "=" & TEXT (1..TEXTLENGTH);
TEMPLENGTH:= COMMANDLEN;

end if;

end if;

COMMANDLEN := COMMANDLEN + 2 + FILELENGTH + BOARDLENGTH;
COMMAND (TEMPLENGTH+1 ..COMMAND_LEN) "& BOARD (1..BOARD_LENGTH)

& ...&

FILENAME (1..FILE_LENGTH);
TEMPLENGTH:= COMMAND_LEN;

-- Create a new bulletin board?
elsif ACTION (1.6) = "CREATE" then

COMMANDLEN := COMMANDLEN + 1 + BOARDLENGTH;
COMMAND (TEMPLENGTH+1..COMMAND_LEN) := ""& BOARD (1..BOARD_LENGTH);
TEMPLENGTH:= COMMANDLEN:

-- Obtain status of bulletin board?
elsif ACTION (1..6) = "STATUS" then

-- Full status on bulletin board?
WINNIE.READ (FIELD => 8,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXT_LENGTH),

if TEXT (1 4) = "FULL" ihen

COMMANDLEN := COMMANDLEN -

COMMAND (TEMPLENGTH+ .-COMMAND_LEN; ., "'FULL",
TEMP_LENGTH := COMMAND LEN:

F-igure ,-5. Tool invocation procedure for BBoard setup window (continued).

B-24

end if;

-- Output information to file?
WINNIE. READ (FIELD => 9,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT (1 ..6) = "OUTPUT" then

WINNIE.READ(FIELD => 10,
INWINDOW => WINDOW ID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXTLENGTH = 0 then
raise NOOUT_FILEFOUND;

end if;

COMMANDLEN := COMMANDLEN + 8 + TEXTLENGTH;
COMMAND (TEMP_LENGTH+1.COMMAND_LEN) := "/OUTPUT=" & TEXT

(1..TEXTLENGTH);
TEMPLENGTH := COMMANDLEN;

end if,

COMMANDLEN := COMMANDLEN + 1 + BOARDLENGTH;
COMMAND (TEMP_LENGTH+I..COMMAND_LEN) ""& BOARD (1..BOARD_LENGTH);
TEMPLENGTH := COMMANDLEN;

Do Garbage Collection on bulletin board.
elsif ACTION (1..7) = "GARBAGE" then

WINNIE-READ (FIELD => 11,
IN WINDOW => WINDOWID,
PUT TEXT IN => TEXT,
LENGTH IN => TEXTLENGTH),

it TEXT (1 4) = "LOG" then

COMMAND LEN := COMMANDLEN +4:
COMMAND (TEMP LENGTH+1 I-COMMANDLEN) := "/LOG",
TEMPLENGTH := COMMANDLEN,

end if;

WINNIE READ (FIELD => 12,
IN WINDOW => WINDOW ID,
PUT TEXT IN => TEXT,
ENGTH IN => TEXT LENGTH),

if TEXT (1 5) = "PURGE" then

COMMAND LEN =COMMANDLEN+ 6:
COMMAND(TEMP LENGTH-I COMMAND LEN).= "'PURGE",

Fiurc To l l inocitio n pr,:cdurC f0r l1,B10 - setup \Cindow, (continued).

TEMPLENGTH:= COMMAND_LEN;

end if;

COMMANDLEN:= COMMANDLEN + 1 + BOARDLENGTH;
COMMAND (TEMP LENGTH+1..COMMANDLEN) :="" & BOARD (1. BOARD_LENGTH);
TEMPLENGTH := COMMANDLEN;

end if;

end if;

exception

when NO BOARD FOUND =>
FILES MISSING := 1,
MESSAGEDISPLAY. DISPLAY INWINDOW
(MESSAGE => "A uuiietin board name is required.",
RINGBELL => True);

when NO DATE FOUND =>
FILESISSIN-G := 5;
MESSAGEDISPLAY.DISPLAY IN WINDOW
(MESSAGE => "A date is required.",
RINGBELL => True)

when NO FILE FOUND =>
FILES _iISSING := 3;
MESSAGEDISPLAY.DISPLAY IN WINDOW
(MESSAGE => "A filename is required.",
RINGBELL => True);

when NOOUT FILE FOUND =>
FILES MISSINGG =10;
MESSAGE DISPLAY. DISPLAYIN WINDOW

MESSAGE => "A filename is required.",
RINGBELL => True);

end INVOKEBBOARD,

Figure B-:, Too! invocation procedure for BBoard setup window (continued).

A. Chance the name of the procedure in the first line from INVOKESAM-
Pl, 1001, to INkOKETOOLC.

K Ch.hanc first a,,tsienmcnt to COMMlAND and COMMANDLEN so that they
retlect the tool heine intecrated.

IAN.\MI'I.I: For B[oard the statcents w cre changed from

COM\1*\\kl -I) I.FN = 11

CONIMl.N\I) (1 .. COMA'AND IE:N) = "SAMPLE TOOL"

B-26

to

COMMANDLEN := 6:
COMMAND (1..CONIMANDLEN) := "BBOARD";

C. Ii the tool requires a filename as input,

a. EIdit the call to W!NNIE.READ to show the correct field number.
Usually the call is correct as it is shown in INVOKESAMPLETOOL.
but if the filename is entered in a field other than Field 1, edit this call
to reflect that.

b. Edit the call to TOOLSUPPOR'i.PARSEFILENAME to show the
correct tool name.

D. If the tool can only be used interactively,

a. Delete the lines that read Field 35 and check the mode the tool will be
used in, i.e.. delete from the line that starts with "\INNIE.READ
(FIELD => 35," to the following "end if;".

b. Replace wvith the lines

BATCi I-JOB := False,
MESSAGI DISP[,AY.1ISPLAYINWINDOW
(MESSAGE => "The tool-call has been invoked.");

E. If the tool ,,,I only be used in batch mode.

a. Delete the lines that read Field 35 and check the mode the toil will be
used in. i.e.. delete from the line that starts with "WINNIE.READ
(FIE) =- 35," to the followin

b. Replace \ ith the lines

Il8\CfI JOB := True:
MESSAGEDISPI,..\Y.DISPLAY IN \VINDOWV
(MIIISS.,\G" "Tool _call has been sent to the batch queue.");

F. If all the remaining fields are togcle fields, and all the possible field values
are actual Va!ues of qualifiers. i.e.., "DEBUG" and "NODEB" rather than
"Set Debug Option" and "Don't Set Debug.," then

a. Delete the code from present position (after batch/interactive handling
code) to the line before the exception handler.

b. Add lines that arc similar to the ones below. This loop reads through
the remaining fields and adds the qualifiers to the command.

for I in FirstField .. LastField loop

B-27

WINNIE.READ (FIELD => 1,

INWINDOW => WINDOWID,

PUTTEXTIN =:. TEXT,
LENGTHIN => TEXTLENGTH);

COMMANDLEN := COMMANDLEN + TEXTLENGTH + 1;

COMMAND (TEMPLENGTH + 1 .. COMMANDLENGTH)
"/" & TEXT (1 .. TEXTLENGTH);

end loop;

G. If a remaining field is a toggle field, and the possible values do not corre-
spond to actual qualifier values, then the field will require a statement simi-
lar to the body of me loop statement shown in F.a. However, before the cor-
rect qualifier can be added to the command some interprtation will be
required.

EXAMPLE: If Field 3 has the possible values "Set Debug Option" and
"Don't Set Debug" corresponding to the qualifiers "DEBUG" and "NODEB,"

then the resulting code would be

WINNIE.READ (FIELD => 3,

INWINDOW => WINDOW ID,

PUT TEXT IN => TEXT,

LENGTHIN => TEXTLENGTH).

if TEXT (1..3) := "Set" then

COMMANDLEN := COMMANDLEN + 6;
COMMAND (TEMP_LENGTH + 1 .. COMMANDLENGTH)

"/DEBUG":

else
COMMAND _LEN := COMNIMANDLEN + 6;

COMMAND (TEMP LENGTH + I .. COMM.-\NDLENGTH)
"'NODEB"

end it*

[I. If a remaining, fild is a fill-in field, then its contents are a parameter that
has to be added to the command.

a. If the ield contents are to be the name of a file that already exist, then the
field -an be added by copying the commands edited during step C, and edit-

inc them to reflect the correct field number.

b If the field contents are not the name of an already existing file, then some-
thing similar to the lines below must be added to the code (with, of course,
the correct field number).

B-28

VINNIE.READ (FIELD => 3,

INWI"iNDOW => WINDOWID,

PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

COMMANDLEN := COMMANDLEN + TEXTLENGTH + 1;
COMMAND (TEMPLENGTH + 1 .. COMMANDLENGTH)

.. "& TEXT (1 .. TEXTLENGTH);

1. If any fill-in fields arc used only upon a toggle field having a specific entry.

A command similar to the one shown in the example below would be

required.

EXAMPLE: 13Board Field 5 (the expiration date) only needs to be checked

for a value if Field 4 has the value EXPIRE. The resulting code could be

W\INNIE.READ (FIELD => 4,

IN WINI)OW => WINDOWID,
PUT TEXT IN => TEXT,
LENGTt I-IN => TEXTLENGTH)"

COMNIANI)_LEN := COMMAND LEN + I + TEXTLENGTH;

COMNIAND (TEMP_LENGTH + I .. COMMANDLEN) := "/' &
TEXT (1 ..TEXTLENGTH);

TIMP IJ ,NGTl I := COMMANDLEN;

ifEXT(1..) = "EXPIRE' then

INNIFI.RXD (FIELD => 5.

IN_\\INDOW => WINDOWID,
PUT TEXT IN => TEXT,
LENGTtl _IN => TEXTLENGTi1);

if" TEXT 1.liN(GtI 1 0 then

raise NO 1)ATEFOUND

end if;

CONIMN\NI)_LEN := COMI.AND LEN + 3 + TEXT LENGTHt"
COMIAND (TEMPfILENGTH + 1 .. COMMAND LENGTH):=

& TEXT (I..TEXT_LENGTH) &

TFIXIP IENGTl l= COMMAND LEN;

end if;

NOTE: Steps F through I can. of course, be done in other ways. For example, in
step I, the code could be written so the qualifer is added only if Field 4 does not show

the default value, i.e.. NOEXPIRE. See figure B-5.

B-29

-- >>>>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: Procedure SITESPECIFIC.GETCOMMMAND

-- OVERVIEW: This procedure calls procedures which build the DCL
command for site-specific tool invocations. The procedures
that are called interpret the tool setup window and build
the corresponding DCL command. These procedures apply
to tools that are integrated with a conformant user
interface. A call must be made in this procedure to each
site-specific tool invocation procedure.

-- PARAMETERS: TOOLNAME -- Name of the tool to be invoked
WINDOWIDTYPE -- Tool setup window id
COMMAND -- DCL command returned
COMMANDLEN -- Length of DCL command
BATCH JOB -- True if batch invocation, else False
FILESMISSING -- 0 if all required parameters are

specified; else, field number where
required parameter should be specified.

-- SYSTEM: DEC VMS Operating System

-- AUTHOR: Martha Hogan

-- DATE: December 8, 1989

- CHANGE HISTORY

-- MM-DD-YY I Initials I Description
--.-.---

-- 03/25/91 MLH Added ALS/N commands
-- 05/23/91 SP Added Bboard command
...

with WINNIE,

-- Add a statement to 'with' your new setup procuedure
with INVOKE ADAVAX, INVOKEIMPVAX, INVOKELNKVAX, INVOKEEXPVMS,
with INVOKE BBOARD, INVOKE LEXGEN.

separate (SITE SPECIFIC)

procedure GET COMMAND (TOOLNAME in out STRING,
WINDOW ID in out WINNIE.WINDOW IDTYPE
COMMAND in out STRING,
COMMAND LEN in out INTEGER;
BATCH JOB in out BOOLEAN;
FILESMISSING in out INTEGER) is

begin

if TOO[NAME (1 6)="ADAVAX" then
INVOKEADAVAX (WINDOWID => WINDOWID,

Figure B-6. SLCSE calling procedure for site-specific tools.

B-30

COMMAND => COMMAND,
COMMANDLEN => COMMANDLEN,
BATCH_JOB => BATCHJOB,
FILESMISSING => FILESMISSING);

elsif TOOL NAME (1..6) = "IMPVAX" then
INVOKE IMPVAX (WINDOWID => WINDOWID,

COMMAND => COMMAND,
COMMANDLEN => COMMANDLEN,
BATCHJOB => BATCH-JOB,
FILESMISSING => FILESMISSING);

elsif TOOLNAME (1 ..6) = "L NKVAX" then
INVOKE_LNKVAX (WINDOWID => WINDOWID,

COMMAND => COMMAND,
COMMANDLEN => COMMANDLEN,
BATCH_JOB => BATCHJOB,
FILESMISSING => FILESMISSING);

elsif TOOLNAME (1..6) = "EXPVMS" then
INVOKEEXPVMS (WINDOWID => WINDOWID,

COMMAND => COMMAND,
COMMAND LEN => COMMANDLEN,
BATCHJOB => BATCHJOB,
FILESMISSING => FILESMISSING);

elsil TOOLNAME (1..6) = "BBOARD" then
INVOKEBBOARD (WINDOWID => WINDOWID,

COMMAND => COMMAND,
COMMANDLEN => COMMANDLEN,
BATCHJOB => BATCH-JOB,
FILESMISSING => FILESMISSING);

elsif TOOLNAME (1..6) = "LEXGEN" then
INVOKELEXGEN (WINDOWID => WINDOWID,

COMMAND => COMMAND,
COMMANDLEN => COMMANDLEN,
BATCHJOB => BATCH JOB,
FILES_MISSING => FILESMISSING);

end if;

end GETCOMMAND;

Fltirc 13-). SILCSE calling procedure for site-specific

tools (continued).

J. Delete all lines remainine in the file that are not used in the INVOKE

TOOLCALI. procedure but are left over from the INVOKESAMPLECALL

procedure.

B.2.5 Modify And Compile Get_Command

I. Edit SITESPECIFIC GETCOMMAND.ADA. Figure B-6 is this procedure

as it currently exists at NOSC.

B-31

A. Add to the with statements: with INVOKEtoolcall;

B. At the end of the procedure, before the "end if," add:

elsif TOOLNAME (1..9) = "TOOL-CALL" then
INVOKEtoolcall (WINDOW ID => WINDOW_ID,

COMMAND => COMMAND,
COMMAND LEN => COMMANDLEN,

BATCH JOB => BATCH JOB,

FILESMISSING => FILESMISSING);

NOTE: TOOL_NAME is case sensitive and must be in capital letters.

B.2.6 Relink SLCSE

1. At prompt, t\pc: ACS SET L1B BASE _ROOT:ILIB.ADALIB

I Type: AI)A INVOKE toolcall

3. Type: ADA SITE SPECIFIC GET COMMAND

4. SET DEF SLCSESUI

5. B, IASE_ROOT: TOOL. SITESPECIFIC I LINKCE

e At prompt, type:
INSTA.L REPL.\CE'SI.t\RED SLCSESUI:CE DRIVER.EXE

The SL-CSI- E-nvironment Manaecr is used in steps B.2.7 through B.2.10.

1.2.7 Enter Tool Name In SEM

This is accomplished by follo%%ing the steps listed below.

1. At prompt, typc: scr

I t lihliht selection 1. Nlodifv the Existing Environment. <return>.

(See figure . \-4)

3. Return on environment name

4 I lighlieht "'TOOLS'* in menu bar, <return>. (See figure A-5)

5. On blank line type: toolcall. (See figure B-I)

NOTE: Tool call in this step should match the one defined as the tool symbol in
step B.2.1.

6. Press PFI and <return> This will bring up the tool definition form.

B-32

B.2.8 Define Tool Parameters

The tool parameters are defined by completing the tool invocation data form shown
in figure B-7. Below is a list of the fields in this form and an explanation of how to
complete each. The numbers in figure B-7 correspond with the numbered explanations
be low.

4

2

H 'i~ ENT M-, IFICATI ,>.N

-,I rvov ta rmf BE3O iRD

i,, pr YE

V-.ors YES3 A a ah',c in K'EyWORD1 mr-wo y"NO

~ '~r t"~ru.nv ocatiori- YES Penaint screen after 'nvoccat ixn? YES

n n-,, INTFRACTIVEONLY P irect output to: SCREEN

P play or3l a us mess3ao NO Number of files rezui. d:

Fnert NNIF w,. -w nubrof t setup form window as :ia , e it4.h
thinto~ .tte ris nco setup wi A w for this tocl then cv

8

10 9

Fiure 11--. Tool inmocation data form for tool with qualifiers.

1. Enter Window% number. <return>

2. If the tool can use a file name selected from the Object Mlenu toggle to
"YES.- otherx~ise toL-zle to "NO." <return>

3. Field should be "YES," toggle Keypad I if necessar%. <return>

4. Field should be "YES,- toggle if necessary. <return>

B-33

5. Field should be "NO," toggle if necessary. <return>

6. If tool will produce output to screen, toggle to "YES," otherwise toggle to
"NO." <return>

7. If last field was "YES," then toggle to "YES," otherwise toggle to "NO."
<return>

8. If tool will require user interaction before running, toggle to "INTERAC-
TIVEONLY." If tool will always be run as a batch job, toggle to

"BATCHONLY." Otherwise, toggle to "BATCHORINTERACTIVE."
<return>

9. If it's possible to use the tool interactively, toggle to "SCREEN," otherwise
toggle to "'OUTPUTFILE." <return>

10. If it's possible to use the tool interactively, toggle to "NO." otherw\ise toggle
to "YE'S." <return>

11. Enter minimum number of file names required by tool. <return>

12. Type: Keypad 0.

The form shown in figure B-2 is completed for a simple tool that produces output
to the screen and can only be used interactivel-.

B.2.9 Associate Tool With Role(s)

Refer to figure A-5 when performing the steps given below:

1. 1tlighlight "ROlS" in the menu bar. <return>

2. Arrow to the role that will use Tool _call, so that it is highlighted. <return>

3. 1 lighlight Tooicall in the default tools list <return>

4. Type: Keypad 0.

5. If more than one role w ill use Tool call, repeat the previous three actions.

6. Type: Keypad 0.

7. 1lighlight "DONE." <return>

8. <return> in response to both questions.

B.2.10 Modify Projects

1. Highlight "3. Modify existing projects." <return> (See figure A-4)

2. Highlight project to be modified. <return> and <return>

B-34

3. Modify personnel by doing the actions listed below..

A. Highlight "PERSONNEL" in the menu bar. <return>

B. Highlight person who Will use Tool-call. Type: PF1 and <return>

C. Highlight role the person will be using Toolcall in. Type: PF1 and
<return>

D. Verify that Toolcall is in reverse video. If it's not, highlight it. <return>

F. Type: Keypad 0 twice.

F. If more than one person on project will be using the tool, repeat actions
B through F.

G. Type: Keypad 0.

H. Fliehlight "DONE." <return>

1. Type Y" in response to both qLuestions.

4. tlhghlieht "5. Exit the Environment Manager." <return>

B-35

APPENDIX C: SOURCE FILES FOR ALS/N WINDOWS

Window 320 is the ALS/N ADAVAX Compiler Setup Window

WINDOW 320 1 80 21 5
PRECEDENCE 111
FRAME VIDEO "PLAIN"
SCROLL BAR ON INSIDE RIGHT
KEYSET 6
TEXT 5 5 "Listing Control Options"
TEXT 16 5 "Special Processing Options"
TEXT 26 5 "Special Compilation Unit Options"
FORM 1
PROMPT 3 1 " Press the Keypad One key to toggle between options, use arrow keys

to"
PROMPT 3 2 " navigate, or press Keypad 0 to return to the command bar."

FIELD 35 1 5 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "INTERACTIVE" 1
DEFAULT "BATCH" 2
LINK UPON DOWN TO FIELD 1

FIELD 500 1 43 33 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "UPDATE WITH SELECTED OBJECT" I
DEFAULT "DON'T UPDATE WITH SELECTED OBJECT" 2
LINK UPON DOWN TO FIELD 1
JUSTIFY RIGHT

FIELD 1 3 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LINK UPON UP TO FIELD 500
LABEL 3 5 "Filename to Compile" "PLAIN" "BOLD"
PROMPT 3 1 " Use arrow keys to navigate, press Keypad 0 to return to command

bar,"
PROMPT 3 2 " or enter ALS/N filename followed by <Return>."
SELECT FIRST

FIELD 2 7 49 12 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOATTRIBUTE" 1
DEFAULT "ATTRIBUTE" 2
LABEL 7 5 "Produce Symbol Attribute Listing" "PLAIN" "BOLD"

FIELD 3 8 49 14 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NODIAGNOSTICS" 1
DEFAULT "DIAGNOSTICS" 2
LABEL 8 5 "Produce Diagnostic Summary Listing" "PLAIN" "BOLD"

FIELD 4 9 49 15 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO MACHINECODE" 1
DEFAULT "MACHINE CODE" 2
LABEL 9 5 "Produce Machine Code Listing" "PLAIN" "BOLD"

FIELD 5 10 49 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO NOTES" 1
DEFAULT "NOTES" 2
LABEL10 5 "Include Diagnostics of Note Severity" "PLAIN" "BOLD"

FIELD 6 11 49 9 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOSOURCE" 1
DEFAULT "SOURCE" 2
LABEL11 5 "Produce Ada Source Listing" "PLAIN" "BOLD"

FIELD 7 12 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT

Figure C-1. ADAVAX setup vindow definitions using WINNIE.

C-1

DEFAULT "NOSUMMARY" 1
DEFAULT "SUMMARY" 2
LABEL12 5 "Produce Summary Diagnostics Listing" "PLAIN" "BOLD"

FIELD 8 13 49 18 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOCROSSREFERENCE" 1
DEFAULT "CROSSREFERENCE" 2
LABEL13 5 "Produce Cross-Reference Listing" "PLAIN" "BOLD"

FIELD 9 14 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "PRIVATE" 1
DEFAULT "NOPRIVATE" 2
LABEL 14 5 "Include Private Specs in Listing" "PLAIN" "BOLD"

FIELD 10 18 49 9 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT 'CHECKS" 1
DEFAULT "NOCHECKS" 2
LABEL18 5 "Provide Run-time Error Checking" "PLAIN" "BOLD"

FIELD 11 19 49 18 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "CODE ONWARNING" 1
DEFAULT "NO_CODE_ONWARNING" 2
LABEL19 5 "Generate Code it Warning Diagnostics" "PLAIN" "BOLD"

FIELD 12 20 49 23 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "CONTAINERGENERATION" 1
DEFAULT "NOCONTAINERGENERATION" 2
LABEL 20 5 "Produce Container if Severity Permits" "PLAIN" "BOLD"

FIELD 13 21 49 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "DEBUG" 1
DEFAULT "NO DEBUG" 2
LABEL 21 5 "Generate Debugger Symbols & Code" "PLAIN" "BOLD"

FIELD 15 22 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOMEASURE" 1
DEFAULT "MEASURE" 2
LABEL 22 5 "Monitor Subprogram Execution Frequency" "PLAIN" "BOLD"

FIELD 16 23 49 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOOPTIMIZE" 1
DEFAULT "OPTIMIZE" 2
LABEL 23 5 "Enable Global Optimization" "PLAIN" "BOLD"

FIELD 14 24 49 13 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "TRACE BACK" 1
DEFAULT "NO TRACE BACK" 2
LABEL 24 5 "Provide Calling Sequence Traceback" "PLAIN' "BOLD"

FIELD 17 28 49 17 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO COMPILERMAINT" 1
DEFAULT "COMPILER MAINT" 2
LABEL 28 5 "Activate All Compiler Options Below" "PLAIN" "BOLD"

FIELD 18 29 49 14 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO BIS COMPILE" 1
DEFAULT "BISCOMPILE" 2
LABEL 29 5 "Compile Generic Built-in Subprograms" "PLAIN" "BOLD"

FIELD 19 30 49 14 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO RSL COMPILE" 1
DEFAULT "RSL COMPILE" 2
LABEL 30 5 "Compile New ADA RSL Package Spec" "PLAIN" "BOLD"

FIELD 20 31 49 19 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO STANDARDCOMPILE" 1
DEFAULT "STANDARD COMPILE" 2
LABEL 31 5 "Compile New STANDARD Package" "PLAIN" "BOLD"

Figure C-1. ADAVAX setup window definitions using \\INNIE (continued).

C-2

FIELD 21 32 49 17 "PLAIN" REVERSE BOLD. "PLAIN" PROTECT
DEFAULT "NO SYSTEMCOMPILE" 1
DEFAULT "SYSTEMCOMPILE" 2
LABEL 32 5 "Compile New SYSTEM Package" "PLAIN" "BOLD"

Figure C-I. ADAVAX setup window definitions using
WINNIE (continued).

C-3

Window 322 is the ALS/N LNKVAX Setup Window

WINDOW 322 1 80 21 5
PRECEDENCE 114
FRAME VIDEO "PLAIN"
SCROLL BAR ON INSIDE RIGHT
KEYSET 6
TEXT 10 5 "Special Processing Options"
TEXT 17 5 "Maintenance Options"
FORM 1
PROMPT 3 1 " Press the Keypad One key to toggle between options, use arrow keys

to"
PROMPT 3 2 " navigate, or press Keypad 0 to return to the command bar."

FIELD 35 1 5 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "INTERACTIVE" 1
DEFAULT "BATCH" 2
LINK UPON DOWN TO FIELD 1

FIELD 500 1 43 33 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "DON'T UPDATE WITH SELECTED OBJECT" 1
DEFAULT "UPDATE WITH SELECTED OBJECT" 2
INVISIBLE
JUSTIFY RIGHT

FIELD 1 3 33 40 "UNDERLINE" "REVEPSE UNDERLINE BOLD"
LINK UPON UP TO FIELD 35
LABEL 3 5 "Main Subprogram" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of the main subprogram or the character string

'NULL' "
PROMPT 3 2 " 'NULL' indicates there is no main subprogram.
SELECT FIRST

FIELD 2 4 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 4 5 "Output Container" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of container to be created by the ALS/N Linker and

placed "
PROMPT 3 2 " in the current Program Library."

FIELD 3 5 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 5 5 "Unit List Filename" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the file listing the Containers to be used as input for the link."
PROMPT 3 2 " This parameter must be supplied when the main subprogram is

NULL"
FIELD 4 6 49 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO UNITS" 1
DEFAULT "UNITS" 2
LABEL 6 5 "Produce Unit Listing" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. UNITS indicates that a unit listing will

be"
PROMPT 3 2 " produced"

FIELD 5 7 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO SYMBOLS" 1
DEFAULT "SYMBOLS" 2
LABEL 7 5 "Produce Symbol Listing" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. SYMBOLS indicates that a symbol

listing will"
PROMPT 3 2 " be produced."

FIELD 6 8 49 12 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT

fI Zurc C-2. LINKVAX sCtup wvindow definitions using WINNIE.

C-4

DEFAULT "NOELABLIST" 1
DEFAULT "ELABLIST" 2
LABEL 8 5 "Produce Elaboration Order Listing" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. ELABLIST indicates that an

elaboration"
PROMPT 3 2 " order listing will be produced."

FIELD 7 12 49 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NODEBUG" 1
DEFAULT "DEBUG" 2
LABEL 12 5 "Produce Container for Debugging" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. DEBUG generates a linked container

for"
PROMPT 3 2 " debugging."

FIELD 8 13 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOMEASURE" 1
DEFAULT "MEASURE" 2
LABEL 13 5 "Produce Container for Performance Measure" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. MEASURE generatesa linked

container for"
PROMPT 3 2 " performance measurement."

FIELD 9 14 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOPARTIAL" 1
DEFAULT "PARTIAL" 2
LABEL 14 5 "Permit Partial Container Creation" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. PARTIAL permits an incomplete

Container to be"
PROMPT 3 2 " produced."

FIELD 10 15 499 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "SEARCH" 1
DEFAULT "NOSEARCH" 2
LABEL 15 5 "Link All Referenced Units" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. SEARCH causes all referenced units

to be"
PROMPT 3 2 " linked; NOSEARCH limits input Containers and routines

referenced by them."
FIELD 11 19 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 19 5 "Propagate Linker Stack Dumps" "PLAIN" "BOLD"

FIELD 12 20 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 20 5 "Produce Functional Trace of Execution" "PLAIN" "BOLD"

FIELD 13 21 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 21 5 "Produce Trace of Data Transactions" "PLAIN" "BOLD"

Figure C-2. LINKVAX setup window definitions using WINNIE (continued).

C-5

WINDOW 323 1 80 21 5
PRECEDENCE 115
FRAME VIDEO "PLAIN"
SCROLL BAR ON INSIDE RIGHT
KEYSET 6
TEXT 10 5 "Special Processing Options"
TEXT 17 5 "Maintenance Options"
FORM 1

PROMPT 3 1 " Press the Keypad One key to toggle between options, use arrow keys
to"

PROMPT 3 2 " navigate, or press Keypad 0 to return to the command bar."

FIELD 35 1 5 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "INTERACTIVE" 1
DEFAULT "BATCH" 2
LINK UPON DOWN TO FIELD 1

FIELD 500 1 43 33 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "DON'T UPDATE WITH SELECTED OBJECT" 1
DEFAULT "UPDATE WITH SELECTED OBJECT" 2
INVISIBLE
JUSTIFY RIGHT

FIELD 1 3 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LINK UPON UP TO FIELD 35
LABEL 3 5 "Linked Container" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of the linked Container for the program that is to be"
PROMPT 3 2 " exported."
SELECT FIRST

FIELD 2 4 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 4 5 "Export Module" "PLAIN" "BOLD"
PROMPT 3 1 " Enter filename where the executable load module is to be stored."

FIELD 3 5 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 5 5 "Directive File" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the filename where exporter directives are contained."

FIELD 4 7 49 6 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO MAP" 1
DEFAULT "MAP" 2
LABEL 7 5 "Produce Program Sections Map Listing" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. MAP indicates that a program sections

map"
PROMPT 3 2 " summarizing the executable image will be produced."

FIELD 5 8 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOSYMBOLS" 1
DEFAULT "SYMBOLS" 2
LABEL 8 5 "Produce Symbol Listing" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. SYMBOLS indicates that a symbol

listing will"
PROMPT 3 2 " be produced; NOSYMBOLS indicates that a symbol listing won't be

produced."
FIELD 6 12 49 13 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOACCOUNTING" 1
DEFAULT "ACCOUNTING" 2
LABEL 12 5 "Report Elapsed CPU and Wall Clock Time" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. ACCOUNTING reports the elapsed

CPU and wall"
PROMPT 3 2 " clock time at program terminaiion in the message output file."

Figure C-3. EXPVMS setup window definitions using WINN1E.

C-6

FIELD 7 13 49 8 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NODEBUG" 1
DEFAULT "DEBUG" 2
LABEL 13 5 "Allow Use of Symbolic Debugger" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. DEBUG activates the Debugger Kernel

in the"
PROMPT 3 2 " program image to allow use of an Ada Program Symbolic Debugger."

FIELD 8 14 49 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NOMEASURE" 1
DEFAULT "MEASURE" 2
LABEL 14 5 "Perform Frequency Analysis" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. MEASURE activates the Frequency

and"
PROMPT 3 2 " Statistical Analyzer Kernel so frequency analysis can be performed."

FIELD 9 15 49 16 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NODEBUGSYMBOLS" 1
DEFAULT "DEBUGSYMBOLS" 2
LABEL 15 5 "Produce Symbols List for Debugger' "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. DEBUG causes the Exporter to

produce a list of"
PROMPT 3 2 " external symbols suitable for use by the VAX/VMS Debugger."

FIELD 10 19 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 19 5 "Propagate Exporter Stack Dumps" "PLAIN" "BOLD"

FIELD 11 20 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 20 5 "Produce Functional Trace of Execution" "PLAIN""BOLD"

FIELD 12 21 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL 21 5 "Produce Trace of Data Transactions" "PLAIN" "BOLD"

Figure C-3. EXPVMS setup window definitions using WINNIE (continued).

C-7

Window 321 is the ALS/N IMPVAX Setup Window

WINDOW 321 1 80 21 5
PRECEDENCE 113
FRAME VIDEO "PLAIN"
SCROLL BAR ON INSIDE RIGHT
KEYSET 6
TEXT 11 5 "Maintenance Options"
FORM 1

PROMPT 3 1 " Press the Keypad One key to toggle between options use arrow keys
to"

PROMPT 3 2 " navigate, or press Keypad 0 to return to the command bar."

FIELD 35 1 5 11 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "INTERACTIVE" 1
DEFAULT "BATCH" 2
LINK UPON DOWN TO FIELD 1

FIELD 500 1 43 33 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "DON'T UPDATE WITH SELECTED OBJECT" 1
DEFAULT "UPDATE WITH SELECTED OBJECT" 2
INVISIBLE
JUSTIFY RIGHT

FIELD 1 3 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LINK UPON UP TO FIELD 35
LABEL 3 5 "Import Module" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of the host file that stores the program object

module to"
PROMPT 3 2 " import."
SELECT FIRST

FIELD 2 5 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 5 5 "Output Container" "PLAIN" "BOLD"
PROMPT 3 1 " Enter the name of the unit body to be created in the

designated program"
PROMPT 3 2 " library. This unit is either a package body or

FIELD 3 7 33 40 "UNDERLINE" "REVERSE UNDERLINE BOLD"
LABEL 7 5 "Directive File" "PLAIN" "BOLD"
PROMPT 3 1 " Enter file which supplies an entry point and reference

information about"
PROMPT 3 2 " the file being imported. This option is required for package

bodies."
FIELD 4 9 33 10 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT

DEFAULT "NOPACKAGE" 1
DEFAULT "PACKAGE" 2
LABEL 9 5 "Unit is a Package Body" "PLAIN" "BOLD"
PROMPT 3 1 " Press Keypad One to toggle. PACKAGE indicates that unit is a

package"
PROMPT 3 2 " body and directive file is required; NOPACKAGE indicates

subprogram body."
FIELD 5 13 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL13 5 "Propagate Importer Stack Dumps" "PLAIN" "BOLD"

FIELD 6 14 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2

Figure C-4. IMPVMS setup window definitions using WINNIE.

C-8

LABEL14 5 "Produce Functional Trace of Execution" "PLAIN" "BOLD"
FIELD 7 15 49 3 "PLAIN" "REVERSE BOLD" "PLAIN" PROTECT
DEFAULT "NO" 1
DEFAULT "YES" 2
LABEL15 5 "Produce Trace of Data Transactions" "PLAIN" "BOLD"

Figure C-4. IMPVMS setup window definitions using WINNIE (continued).

C-9

MOO file for Command Executive Windows

Window 20 is Tools Window for all roles
IF WINDOW = 20 AND FIELD = 0 THEN UPON... CRET=STAY, CODE PARSEINVOKE,
CASE OF (TEXT),

CASE ("ADAVAX"),
CASE OF (CHECK 2),
CASE (1), INV 99, VIS iOl, ADV 102, ADV CHECK 1,

END CASE,
CASE ("IMPVAX"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,
CASE ("LNKVAX"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,
CASE ("EXPVMS"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,

STATUS(8) = STAY, CODE PARSEONLY,
CASE OF (TEXT),

CASE ("ADAVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("IMPVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("LNKVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("EXPVMS"), INV99, VIS 101 CHECK 1, ADV 102, FIELD 2,

END CASE.

Window 200 is the Command (KEYWORD) Mode window.
Status (22) means User has used Up arrow
Status (23) means User has used Down arrow
Status (44) means User has used Gold Up arrow

IF WINDOW = 200 AND FIELD = 1 THEN UPON STATUS(22) = CODE RECALLPREVIOUS;
STATUS(23) = CODE RECALLNEXT;
STATUS(44) = CODE RECALLALL, GOTO 199;
CRET= CODE PARSEINVOKE,
CASE OF (TEXT),

CASE ("ADAVAX"),
CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,
CASE ("IMPVAX"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,
CASE ("LNKVAX"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

END CASE,
CASE ("EXPVMS"),

CASE OF (CHECK 2),
CASE (1), INV 99, VIS 101, ADV 102, ADV CHECK 1,

Figure C-5. MOO commands for ALS/N tools.

C-10

END CASE,

END CASE;
STATUS(8) = CODE PARSEONLY,
CASE OF (TEXT),

CASE ("ADAVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("IMPVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("LNKVAX"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,
CASE ("EXPVMS"), INV 99, VIS 101 CHECK 1, ADV 102, FIELD 2,

END CASE.

Window 320 is the ALS/N ADAVAX Setup Window
IF WINDOW = 320 AND FIELD = 1:35 THEN UPON TAB=GO BACK 102, FIELD 1, VIS 320
IF WINDOW = 320 AND FIELD = 500 THEN UPON TAB=CODE MODIFYUSEOBJECT,

GO BACK 102, FIELD 1, VIS 320; CRET=CODE MODIFY_USEOBJECT.

Window 321 is the ALS/N IMPVAX Setup Window
IF WINDOW = 321 AND FIELD = 1:35 THEN UPON TAB=GO BACK 102, FIELD 1, VIS 321.
IF WINDOW = 321 AND FIELD = 500 THEN UPON TAB=CODE MODIFYUSEOBJECT,

GO BACK 102, FIELD 1, VIS 321; CRET=CODE MODIFYUSEOBJECT.

Window 322 is the ALS/N LNKVAX Setup Window
IF WINDOW = 322 AND FIELD = 1:35 THEN UPON TAB=GO BACK 102, FIELD 1, VIS 322.
IF WINDOW = 322 AND FIELD = 500 THEN UPON TAB=CODE MODIFYUSEOBJECT,

GO BACK 102, FIELD 1, VIS 322; CRET=CODE MODIFYUSEOBJECT.

Window 323 is the ALS/N EXPVMS Setup Window
IF WINDOW = 323 AND FIELD = 1:35 THEN UPON TAB=GO BACK 102, FIELD 1, VIS 323.
IF WINDOW = 323 AND FIELD = 500 THEN UPON TAB=CODE MODIFYUSEOBJECT,

GO BACK 102, FIELD 1, VIS 323; CRET=CODE MODIFYUSEOBJECT.

Figure C-5. MOO commands for ALS/N tools (continued).

C-l1

-- >>>>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: INVOKEADAVAX

-- AUTHOR: Martha Hogan

-- DATE: March 26,1991

-- ABSTRACT: This procedure interprets the WINNIE Setup Window for the
- ALS/N Ada compiler and builds the appropriate DCL command.

The content of the ALS/N Ada Setup Window is listed below:

- Field 1: Filename to Compile
- Field 2: Produce Symbol Attribute Listing
- Field 3: Produce Diagnostic Summary Listing
- Field 4: Produce Machine Code Listing
- Field 5: Include Diagnostics of Note Severity
- Field 6: Produce Ada Source Listing
- Field 7: Produce Summary Diagnostics Listing
- Field 8: Produce Cross-Reference Listing
- Field 9: Include Private Specs in Listing

- Field 10: Provide Run-time Error Checking
- Field 11: Generate Code if Warning Diagnostics
- Field 12: Produce Container if Severity Permits
- Field 13: Generate Debugger Symbols & Code
- Field 14: Monitor Subprogram Execution Frequency
- Field 15: Enable Global Optimization
- Field 16: Provide Calling Sequence Traceback

- Field 17: Activate All Compiler Options Below
- Field 18: Compile Generic Built-in Subprograms
- Field 19: Compile New ADA_RSL Package Spec
- Field 20: Compile New STANDARD Package
- Field 21: Compile New SYSTEM Package
- Field 35: Interactive/Batch flag

- CHANGE HISTORY

-- MM-DD-YY I Itials I Description

-- 07-22-91 MLH Changed code so qualifiers are added to command
only if not the default.

with TOOLSUPPORT, WINNIE, MESSAGE_DISPLAY;
use WINNIE;

procedure INVOKEADAVAX (WINDOWID in WINNIE.WINDOWIDTYPE;
COMMAND • in out STRING;
COMMANDLEN • in out NATURAL;
BATCH JOB • in out BOOLEAN;
FILESMISSING • out NATURAL) is

Figure C-6. Tool invocation procedure for ADAVAX setup window.

C-12

FILEFOUND BOOLEAN; -- Status returned from PARSEFILENAME
TEXT STRING (1..255); -- Text returned from WINNIE.READ
TEXTLENGTH :NATURAL; -- Length of TEXT
FILENAME STRING (1..255); -- Filename returned from PARSEFILENAME
FILELENGTH :NATURAL; -- Length of FILENAME
OLD_LENGTH INTEGER; -- Length of command string

begin

-- Read Field 1 to obtain filename to compile.
WINNIE.READ (FIELD => 1,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

-- If the user hasn't specified a filename, display a message and return
-- to the ADAVAX setup menu.

if TEXTLENGTH = 0 then
FILESMISSING:= 1:
MESSAGE DISPLAY.DISPLAY IN WINDOW

(MESSAGE => "A filename must be specified.", RINGBELL => True);
return;

end if;

-- Check syntax of filename.
TOOLSUPPORT.PARSEFILENAME (INPUT-FILE => TEXT (1 ..TEXTLENGTH),

DEFAULTSPEC => ".ADA",
TOOLNAME => "ADAVAX",
LOGICAL PREFIX => True,
ENTIRE_FILESPEC => FILENAME,
ENTIREFILELENGTH => FILELENGTH,
FILE_FOUND => FILEFOUND,
MULTFILESALLOWED => False);

if not FILEFOUND then
FILESMISSING:= 1
return;

else
FILESMISSING:= 0;

end if;

Process the rest of the command.
COMMANDLEN:= 6;
COMMAND (i..COMMANDLEN) := "ADAVAX";
OLDLENGTH:= COMMAND_LEN;

Read Fields 2 through 8 to obtain command qualifiers.
for I in 2.8 loop

WINNIEREAD (FIELD => WINNIE.FIELDIDTYPE (I),
INWINDOW => WINDOWID,
PUT_TEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT(1 ..3) /= "NO_" then
COMMAND_LEN:= COMMANDLEN + 1 + TEXTLENGTH;

Figure C-6. Tool invocation procedure for ADAVAX setup window

(continued).

C-13

COMMAND (OLDLENGTH+1 .. COMMAND_LEN) " & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMAND_LEN;

end if;

end loop;

for I in 9..13 loop
WINNIE.READ (FIELD => WINNIE.FIELDID TYPE (I),

INWINDOW => WINDOW_ID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT(1 ..3) = "NO_" then
COMMANDLEN := COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLD_LENGTH+1 .. COMMANDLEN) := "P'& TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN,

end if;

end loop;

for I in 14..15 loop
WINNIE.READ (FIELD => WINNIE.FIELDID TYPE (I),

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT(1 ..3)/= "NO_"then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 .. COMMANDLEN) ""& TEXT (1..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

end if;

end loop;

WINNIE.READ (FIELD => 16,
INWINDOW => WINDOWID,
PUT TEXT IN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT(1 ..3) = "NO-" then
COMMANDLEN := COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLD LENGTH+1 .. COMMANDLEN) := 7& TEXT (1..TEXTLENGTH);
OLDLENGTH := COMMANDLEN;

end if;

for l in 17..21 loop
WINNIE.READ (FIELD => WINNIE.FIELDID TYPE (I),

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT(1 ..3)/= "NO_" then
COMMANDLEN := COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 .. COMMAND_LEN) := 7/ & TEXT (1 ..TEXTLENGTH);
OLDLENGTH := COMMAND_LEN;

Figure C-6. Tool invocation procedure for ADAVAX setup window (continued).

C-14

end if;

end loop;

-- Concatenate filename to end of command.
COMMANDLEN:= COMMANDLEN + 1 + FILELENGTH;
COMMAND (OLDLENGTH+1 ..COMMANDLEN) :=""& FILE-NAME (1 ..FILE_LENGTH);

-- Read Field 35 to see if interactive or batch execution.
WINNIE.READ (FIELD => 35,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT (1 .. 11) = "INTERACTIVE" then
BATCH JOB:= False;
MESSAGEDISPLAY.DISPLAYINWINDOW

(MESSAGE => "The ALS/N Ada compiler has been invoked.");
else

BATCH-JOB := True;
MESSAGEDISPLAY.DISPLAY INWINDOW

(MESSAGE => "ADAVAX job has been sent to the batch queue.");
end if;

end INVOKEADAVAX;

Figure C-6. Tool invocation procedure for ADAVAX setup window

(continued).

C-15

-- >>>>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: INVOKELNKVAX

-- AUTHOR: Martha Hogan

-- DATE: March 28, 1991

-- ABSTRACT: This procedure interprets the WINNIE Setup Window for the
ALS/N Linker and builds the appropriate DCL command. The
,ontent of the Linker Setup Window is listed below:

- Field 1: Main Subprogram
- Field 2: Output Container
- Field 3: Unit List Filename
- Field 4: Produce Unit Listing
- Field 5: Produce Symbol Listing
- Field 6: Produce Elaboration Order Listing
- Field 7: Produce Container for Debugging
- Field 8: Produce Container for Performance Measure
- Field 9: Permit Partial Container Creation
- Field 10: Link All Referenced Units
- Field 11: Propagate Linker Stack Dumps
- Field 12: Produce Functional Trace of Execution
- Field 13: Produce Trace of Data Transactions
- Field 35. Batch/Interactive Flag

- CHANGE HISTORY

-- MM-DD-YY I Initials I Description

-- 07/25/91 MLH Fixed message displayed when LNKVAX is invoked
interactively.

with TOOLSUPPORT, WINNIE, MESSAGEDISPLAY;
use WINNIE;

procedure INVOKELNKVAX (WINDOWID :in WINNIE.WINDOWIDTYPE;
COMMAND - in out STRING;
COMMANDLEN : in out NATURAL;
BATCHJOB • in out BOOLEAN;
FILES_MISSING out NATURAL) is

FILE FOUND BOOLEAN; -- Status returned from PARSE FILENAME
TEXT STRING (1..255); -- Text returned from WINNIE.READ
TEXTLENGTH NATURAL; -- Length of TEXT
FILE NAME STRING (1.255); -- Filename returned from

PARSEFILENAME
FILELENGTH NATURAL; -- Length of FILENAME
OLDLENGTH INTEGER, -- Length of command string

FILENOTSPECIFIED exception;

Figure C-7. Tool invocation procedure for LNKVAX setup window.

C-16

begin

FILESMISSING:= 0;

-- Start building the command.
COMMANDLEN:= 6;
COMMAND (1 ..COMMANDLEN):= "LNKVAX";
OLDLENGTH:= COMMANDLEN;

for I in 1..2 loop

-- Read Fields 1 & 2 to obtain Main Program and Output Container.
WINNIE.READ (FIELD => WINNIE.FIELDIDTYPE (I),

INWINDOW => WINDOW_ID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

-- If the user hasn' specified filename, set FILESMISSING parameter
-- to the field where filename is missing, and raise an exception
-- A message will be displayed and the user will return to the
-- appropriate field in the setup window,

if TEXT LENGTH = 0 then
FILESMISSING:= I;
raise FILENOTSPECIFIED;

end if;

COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLD_LENGTH+1 .. COMMAND_LEN) : & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

end loop;

-- Read Field 3 to obtain Unit List file. Specification of Unit List file
-- is required only if main subprogram is NULL.

WINNIE READ (FIELD => 3,
INWINDOW => WINDOWID,
PUTTEXT IN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXTLENGTH /= 0 then
COMMANDLEN := COMMANDLEN + 11 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 ..COMMANDLEN) := "/UNITLIST=" & TEXT

(1..TEXT LENGT
H);

OLDLENGTH:= COMMANDLEN;
end if;

-- Read Fields 4 through 9 to obtain qualifiers. The default for Fields
-- 4 through 9 is the negated qualifier; that is, preceded with "NO-".
-- Add qualifier to command only if not the default.

for I in 4..9 loop

Figure C-7. Tool invocation procedure for LNKVAX setup window (continued).

C-17

WINNIE.READ (FIELD => WINNIE.FIELDID_TYPE (I),
INWINDOW => WINDOW_ID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (1.3)/= "NO_" then
COMMANDLEN := COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 .. COMMAND_LEN) := " & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMAND_LEN;

end if;
end loop;

-- Read Field 10 for SEARCH/NOSEARCH qualifier.
WINNIE.READ (FIELD => 10,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLD LENGTH+1 .. COMMANDLEN) := "/Y & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

-- Read Fields 11 through 13 to obtain qualifiers. The default for Fields
-- 11 through 13 is NO. Add qualifier to command only if not the default.

for I in 11..13 loop
WINNIE.READ (FIELD => WINNIE.FIELD ID TYPE (I),

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (1 .2) /= "NO" then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLEN
COMMAND (OLDLENGTH+I ..COMMANDLEN): " & EXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

end if;
end loop;

-- Read Field 35 to see if interactive or batch execution.
WINNIE.READ (FIELD => 35,

INWINDOW => WINDOWID,
PUTTEXT IN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (..1 1) = "INTERACTIVE" then
BATCHJOB:= False;
MESSAGEDISPLAY.DISPLAY IN WINDOW
(MESSAGE => "The ALS/N Linker has been invoked.");

else
BATCH JOB := True;
MESSAGEDISPLAY.DISPLAY IN WINDOW
(MESSAGE => "LNKVAX job has been sent to the batch queue.");

end if;

exception

Figure C-7. Tool invocation procedure for LNKVAX setup window (continued).

C-18

when FILENOTSPECIFIED =>
MESSAGEDISPLAY.DISPLAYINWINDOW

(MESSAGE => "A filename must be specified.", RINGBELL => True);

end INVOKELNKVAX;

Figure C-7. Tool invocation procedure for LNKVAX setup window

(continued).

C-19

-- >>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: INVOKEEXPVMS

-- AUTHOR: Martha Hogan

-- DATE: March 28, 1991

-- ABSTRACT: This procedure interprets the WINNIE Setup Window for the
ALS/N Exporter and builds the appropriate DCL command. The
content of the Exporter Setup Window is listed below:

- Field 1: Linked Container
- Field 2: Export Module
- Field 3: Directive File
- Field 4: Produce Program Sections Map Listing
- Field 5: Produce Symbol Listing
- Field 6: Report Elapsed CPU and Wall Clock Time
- Field 7: Allow Use of Symbolic Debugger
- Field 8: Perform Frequency Analysis
- Field 9: Produce Symbols List for Debugger
- Field 10: Propagate Exporter Stack Dumps
- Field 11: Produce Functional Trace of Execution
- Field 12: Produce Trace of Data Transactions
- Field 35: Batch/Interactive Flag

- CHANGE HISTORY

-- MM-DD-YY IInitials I Description

with TOOLSUPPORT, WINNIE, MESSAGEDISPLAY;
use WINNIE;

procedure INVOKEEXPVMS (WINDOWID : in WINNIE.WINDOWIDTYPE;
COMMAND : in out STRING;
COMMANDLEN : in out NATURAL;
BATCHJOB : in out BOOLEAN;
FILESMISSING : out NATURAL) is

FILEFOUND : BOOLEAN; -- Status returned from PARSE FILENAME
TEXT : STRING (1 ..255); -- Text returned from WINNIE.READ
TEXTLENGTH : NATURAL; -- Length of TEXT
FILENAME : STRING (1..255); -- Filename returned from PARSEFILENAME
FILELENGTH : NATURAL; -- Length of FILENAME
OLDLENGTH : INTEGER; -- Length of command string

FILENOTSPECIFIED : exception;

begin

FILESMISSING := 0;

Figure C-8. Tool invocation procedure for EXPVMS setup window.

C-20

Start building the command.
COMMANDLEN:= 6;
COMMAND (1..COMMAND LEN) :="EXPVMS";
OLDLENGTH:= COMMAND_LEN;

for I in 1. .2 loop

Read Fields 1 & 2 to obtain Linked Container and Export Module.
WINNIE.READ (FIELD => WINNIE.FIELDIDTYPE (I),

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

-- If the user hasn't specified filename, set FILESMISSING parameter
-- to the field where filename is missing, and raise an exception.
-- A message will be displayed and the user will return to the
-- appropriate field in the setup window,

if TEXTLENGTH = 0 then
FILES_MISSING:= 1;
raise FILENOTSPECIFIED;

end if;

COMMAND LEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND-(OLD LENGTH+1 .. COMMAND_LEN) :=" & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMAND_LEN;

end loop;

-- Read Field 3 to obtain Directives file. Specification of the Directives
-- file is optional.

WINNIE.READ (FIELD => 3,
INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXTLENGTH /= 0 then
COMMAND LEN := COMMAND LEN + 13 + TEXTLENGTH;
COMMAND-(OLDLENGTH+1 .. COMMAND_LEN) :="/DIRECTIVES=" & TEXT

(1..TEXT_LENGTH);
OLDLENGTH-= COMMANDLEN;

end if;

-- Read Fields 4 through 9 to obtain qualifiers. The default for Fields
-- 4 through 9 is the negated qualifier; that is, preceded with "NO_".
-- Add qualifier to command only if not the default.

for I in 4..9 loop
WINNIE.READ (FIELD => WINNIE.FIELDIDTYPE (I),

INWINDOW => WINDOWID,
PUT_TEXT IN => TEXT,
LENGTH_IN => TEXTLENGTH);

Figure C-8. Tool invocation procedure for EXPVMS setup window

(continued).

C-21

if TEXT (1..3)/= "NO_" then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 .. COMMAND_LEN) :="/" & TEXT (1..TEXTLENGTH);
OLDLENGTH:= COMMAND_LEN;

end if;
end loop;

-- Read Fields 10 through 12 to obtain qualifiers. The default for Fields
-- 10 through 12 is NO. Add qualifier to command only if not the default.

for I in 10.12 loop
WINNIE.READ (FIELD => WINNIE.FIELD IDTYPE (I),

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (1 ..2) /= "NO" then
COMMANDLEN:= COMMANDLEN + TEXTLENGTH + 1;
COMMAND (OLDLENGTH+1 ..COMMANDLEN):= " & TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

end if;
end loop;

-- Read Field 35 to see if interactive or batch execution.
WINNIEREAD (FIELD => 35,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (1.. 11) = "INTERACTIVE" then
BATCHJOB:= False;
MESSAGEDISPLAY.DISPLAY IN WINDOW

(MESSAGE => "The ALS/N Exporter has been invoked.");
else

BATCH JOB := True;
MESSAGEDISPLAY.DISPLAY IN WINDOW

(MESSAGE => "EXPVMS job has been sent to the batch queue.");
end if;

exception

when FILENOTSPECIFIED =>
MESSAGE_DISPLAY.DISPLAYINWINDOW

(MESSAGE => "A filename must be specified.", RINGBELL => True);

end INVOKEEXPVMS;

Figure C-8. Tool invocation procedure for EXPVMS setup window

(continued).

C-22

- >>>>>>>>>>>>>>>>>>>>>> ADA COMPILATION UNIT <<<<<<<<<<<<<<<<<<<<<<<<<

-- NAME: INVOKEIMPVAX

-- AUTHOR: Martha Hogan

-- DATE: March 28, 1991

-- ABSTRACT: This procedure interprets the WINNIE Setup Window for the
ALS/N Importer and builds the appropriate DCL command. The
content of the Importer Setup Window is listed below:

- Field 1: Import Module
- Field 2: Output Container
- Field 3: Directive File
- Field 4: Unit is a Package Body
- Field 5: Propagate Importer Stack Dumps
- Field 6: Produce Functional Trace of Execution
- Field 7: Produce Trace of Data Transactions

- CHANGE HISTORY

-- MM-DD-YY I Initials I Description
--..---

with TOOLSUPPORT, WINNIE, MESSAGE_DISPLAY;
use WINNIE;

procedure INVOKEIMPVAX (WINDOWID in WINNIE.WINDOWIDTYPE;
COMMAND • in out STRING;
COMMANDLEN • in out NATURAL;
BATCHJOB " in out BOOLEAN;
FILESMISSING :out NATURAL) is

FILE FOUND BOOLEAN; -- Status returned from PARSEFILENAME
TEXT : STRING (1..255); -- Text returned from WINNIE.READ
TEXTLENGTH : NATURAL; -- Length of TEXT
FILENAME : STRING (1.255); -- Filename returned from PARSEFILENAME
FILELENGTH :NATURAL; -- Length of FILENAME
OLDLENGTH INTEGER; -- Length of command string

FILENOTSPECIFIED " exception;

begin

FILESMISSING := 0;

Start building the command.
COMMANDLEN := 6:
COMMAND (..COMMANDLEN) := "IMPVAX";
OLDLENGTH := COMMAND_LEN;

Figure C-9. Tool invocation procedure for IMPVAX setup window.

C-23

for I in 1. .2 loop

-- Read Fields 1 & 2 to obtain Import Module and Output Container
WINNIE.READ (FIELD => WINNIE.FIELDIDTYPE (I),

INWINDOW => WINDOW ID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

-- If the user hasn't specified filename, set FILESMISSING parameter
-- to the field where filename is missing, and raise an exception.
-- A message will be displayed and the user will return to the
-- appropriate field in the setup window,

if TEXT LENGTH = 0 then
FILESMISSING:= I;
raise FILENOTSPECIFIED;

end if;

COMMANDLEN:= COMMAND-LEN + 1 + TEXT-LENGTH;
COMMAND(OLD LENGTH+I .. COMMANDLEN) ""& TEXT (1..TEXTLENGTH);
OLDLENGTH:= COMMAND_LEN;

end loop;

-- Read Field 3 to obtain Directives File. Specification of Directives
-- File is optional.

WINNIE.READ (FIELD => 3,
INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXTLENGTH /= 0 then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;
COMMAND (OLDLENGTH+1 .. COMMAND_LEN) ""& TEXT (1 ..TEXTLENGTH);
OLDLENGTH:= COMMANDLEN;

end if;

-- Add space to command before concatenating qualifiers.
COMMANDLEN:= COMMANDLEN + 1;
COMMAND (COMMANDLEN .. COMMAND_LEN) :="";
OLDLENGTH:= COMMAND_LEN;

-- Read Fields 4 through 7 to obtain qualifiers. The default for Field 4
-- is NOPACKAGE; the default for Fields 5 through 7 is NO. Add qualifier
-- to command only if not the default.

for I in 4.7 loop
WINNIE.READ (FIELD => WINNIE.FIELD ID TYPE (I),

IN WINDOW => WINDOW_ID,
PjT TEXTIN => TEXT,
LENGTHIN => TEXTLENGTH);

if TEXT (1.2)/= "NO" then
COMMANDLEN:= COMMANDLEN + 1 + TEXTLENGTH;

Figure C-9. Tool invocation procedure for IMPVAX setup window (continued).

C-24

COMMAND (OLDLENGTH+1..COMMAND_LEN):= "' & TEXT(1 ..TEXTLENGTH);
OLDLENGTH := COMMANDLEN;

end if;
end loop,

-- Read Field 35 to see if interactive or batch execution.
WINNIE.READ (FIELD => 35,

INWINDOW => WINDOWID,
PUTTEXTIN => TEXT,
LENGTH_IN => TEXTLENGTH);

if TEXT (1.. 11) = "INTERACTIVE" then
BATCH JOB:= False;
MESSAGE_DISPLAY.DISPLAY IN WINDOW
(MESSAGE => "The ALS/N Importer has been invoked.");

else
BATCHJOB:= True;
MESSAGE_DISPLAY.DISPLAY IN WINDOW
(MESSAGE => "IMPVAX job has been sent to the batch queue.");

end if;

exception

when FILE NOT SPECIFIED =>
MESSAGE_DISPLAY.DISPLAY IN WINDOW

(MESSAGE => "A filename must be specified.", RINGBELL => True);

end INVOKEIMPVAX;

Figure C-9. Tool invocation procedure for IMPVAX setup window

(continued).

C-25

APPENDIX D: DESCRIPTION OF TOOLS ADDED
TO SLCSE BY NOSC

LGEN

This language generator tool was developed by B. Meyers, and A. Smith of NSWC.
Dahlgren. It is written in Ada and runs on VAX/VMS. The tool accepts as input a for-
mal definition of a language in a Backus-Naur form (BNF). From the specification of
the grammar, LGEN generates elements of the language. The report by Meyers (1988)
contains examples of how to use LGEN to generate (1) Ada type declarations, (2) an
assembler laneiiage, and (3) reading material for elementary school children. LGEN
has been used extensively for the Ship Gridlock project at NSWC, Dahlgren, and was
used on the Inertial Navigation System project at the SEI to generate test messages.

ADA BULLETIN BOARD

This electronic bulletin board program was developed by L. Madden.
K. Schumaker, and B. Meyers of NSWC, Dahlgren. This program is written entirely in
Ada and runs on VAX/VMS. This electronic bulletin board supports features common
to other bulletin boards, such as, reading and posting messages, searching for charac-
ter strings, and saving messages to files. Other features that are supported include
(1) posting messages with expiration dates, (2) posting messages with an option to
send electronic mail. (3) accessing messages on a screen basis with screen browsing
support, (4) explicit deletion of messages, and (5) a garbage collection capability. A
discussion of the Ada Bulletin Board user interface and system management operations
is found in Madden (1989).

LEXGEN

This lexical analyzer generator tool was developed by A. Smith and B. Meyers of
NSWC, Dahlgren. It is written in Ada and runs on VAX/VMS. The tool accepts as
input a specification of the tokens of a language and generates Ada code that may be
used to scan an input stream. Unique features of LEXGEN include (1) procedures to
return tokens from either a file or a buffer, (2) capability to return multiple tokens for
a given input character sequence, (3) capability to return line and column number of
the token location, (4) automatic conversion of lexeme to a particular case, and
(5) considerable error processing. A description of LEXGEN and examples of its use
is found in Smith (1989).

D-1

APRICOT

The Ada Primitive Compilation Order Tool (APRICOT) is a portable compilation
order tool that was developed by R. Ollerton of NOSC. It was written in Ada and runs
of VAX/VMS (DEC ADA), Sun (Alsys), and other compilers/computers. Tool features
include the following: (1) generates compilation order from either a file containing a
list of file names or a concatenated source file in pager format, (2) automatic compila-
tion command files from either the file of file names or concatenated pager file,
(3) capability to page and unpage files, and others. The tool offers both a command
line interface and a menu interface with a help facility. A users guide for this tool is
scheduled to be written in FY 92.

BMD

The Bit-Oriented Message Definer (BMD) is a prototype tool for defining bit-
oriented messages in Ada. This tool was developed by H. Mumm and S. Parker,
NOSC, as an Independent Exploratory Development (lED) project. BMD is written in
Ada and runs on VAX/VMS (DEC Ada), Sun (Telesoft), and Sun (Alsys) computers/
compilers. The BMD defines messages using records and record representation specifi-
cations. BMD generates source code for five different target computers. This source
code varies from one target computer to another because of differences in how bits are
numbered, how they are ordered, and the size of type integer. A preliminary version of
this tool was used by Science Applications International Corporation (SAIC) to gener-
ate approximately 7000 Ada source lines of code for the Ada Bit-Oriented Message
Handler (ABOM) project. A description of the tool and examples is found in Mumm
(1990).

PRETTY PRINTER

This pretty printer is Pretty Printer 6 from the Ada Software Repository (ASR) at
White Sands, New Mexico. It was developed by A. Shell, AdaCraft, Incorporated, for
the NASA/Goddard Space Flight Center. This tool was written in Ada and runs on
VAX/VMS (DEC Ada), SUN (Verdix), PS (Alsys) and other compilers/computers.
Pretty Printer 6 implements many of the directives in the Proposed MIL-HDBL-1804,
"Ada Style Guide." This tool is also in the AdaNet repository. The modifications
required to change the number of columns of indentation, the case of variable names,
and other features of the pretty printer are isolated in one Ada package specification.
This pretty printer was used by NOSC, Code 854, for the Ada discrete-event simula-
tion research conducted for the Shared Adaptive Internetworking (SAINT) project. A
machine-readable users guide for the pretty printer and Proposed MIL-HDBL-1804 are
in the ASR and AdaNet.

D-2

ADA LINE COUNTER

The Ada line counter is FileChecker from which came from the ASR. This pro-
gram was written by R. Conn, T.I. and Management Assistance Corporation of Amer-
ica (MACA). Fixes have beert made by H. Mumm, NOSC, and P. Babick, SAIC. Ada
line counter is written in Ada and runs on VAX/VMS (DEC Ada), Sun (Verdix), and
probably all validated Ada compilers. The program counts Ada source lines of code
several different ways. This tool counts statements ending with delimiting semicolons,
comments, statements ending with delimiting semicolons plus comments, and "card
image" statements or lines. This tool was used on the ABOM project by NOSC and
SAIC to report programmer productivity statistics. This tool has also been used at
NOSC on the Joint Automated Message Editing System (JAMES) project.

BODY STUBBER

The body stubber is Body Stubber 2 from the ASR. This tool was written by
J. Orost, Concurrent Computer Corporation. It was upgraded by N. Tran, NOSC, so
that it will run on VAX/VMS (DEC Ada) and other validated Ada compilers. This tool
is useful when developing large systems in Ada where it is essential to define the inter-
faces very early. The body stubber reads in an Ada package specification that contains
the specification for subprograms and tasks and automatically creates a compilable
package body containing stubs for the subprograms and tasks.

D-3

RERMGOGANIAONAEPORTAD ADOFom Approve
T OMB No. 0704-0188

Public reporting burden for this coltec,_an of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources gathering and

mantalnOngthedataneeded andcompletingandreviewingthecollectionofInformation Sendcommentsregardingthis burdenestimateoranyotheraspect ofthiscollectonofinformalon including
sud~gestions for red ucing Im s burden. to Wash ington Headq uariers Services. Directorate for information Operations and Reports, 1215 Jefferson Davis HIg hway, Suite 1204. Arlington VA 222-02-4302
and 11) the Office of Management and Budget Paperwork Reduction Project (0704-0188) Washington, DC 20503

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DARTES COVERED

November 1991 Final

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

EXTENSIBILITY EXPERIMENTS WITH THE SOF1OARE LIFE-CYCLESUPPORT ENVIRONMENT PR: EC13
WVU: DN088524

6 AUTHOR(S) PE: 002234N
S. A. Parker, R. H. Mumm

7 PERFORMiNG ORGANIZATION NAME(S) AND AOORESS ES) 8 PERFORMVING ORGANtZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TR 1463

an9 SPONSORiNG/MONtheING AGENCY NAVE(Si AND ADnRESS(ESIf 10 SPONSOR NdMONIteRNGAGENCY REPORT NUMBER

Naval Ocean Syvstems Center

B)ck P rograms
Sin Diego, CA 92152-5000

11 SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT fMaximum 200 words)

This report describes the research carried out on the Software Life-Cycle Support Environment (SLCSE) by the Soft-

ware Engineering Environment (SEE) prototypes task of the Software Engineering for 1 Systems project. The focus of
this investigation is to perform extensibility experiments with the SLCSE. These experiments included the development of
-in interface to the ALS/N ADAVAX compiler and the integration of a number of public domain and other no-cost software
tools into the SLCSE. One goal of this research was to determine if the SLCSE could be tailored to meet the needs of a
specific projec't.

1'4 SUBJECT TERMS I'- NUMBER OF PAGES

sotaeengineering tech noloT" 1 24
hierarchical development technolocoN i6 RCE CODE
HDM
POD

17 SECURiTY CLASSIFICATION 18 SECUI TY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION Or ABSTRACT
OF RE-CRT OF T-IS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAM IE AS REPORT

NSN 7540-01-280 550C Staroard form 298

UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVIDUAL I21b) TEL.EPHONE (,ncftde Area Code) 21c OFFICE SYMBOL

S. A. Parker I (619) 553-5120 Code 411

NSN 7340-01-2805500 Standara form 2W8

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 001.2 Patent Counsel (1)
Code 0142 K. Campbell (1)
Code 0144 R. November (1)
Code 40 R. C. Kolb (1)
Code 402 R. A. Wasilauskv (1)
Code 41 A. Justice (1)

Code 411 J. Schulte (1)
Code 411 R. Holmes (1)
Code 411 H. Muin (1)
Code 411 S. Parker (1)
Code 411 S. Rotter (1)

Code 411 1. Shapiro (1)
Code 411 N. Tran (1)
Code 961 Archive/Stock (6)
Code 964B Library (3)

Defense Technical Information Center Center for Naval Analyses
Alexandria, VA 22304-6145 (4) Alexandria, VA 22302-0268

NCCOSC Washington Liaison Office Navy Acquisition, Research & Develop-
Washington, DC 20363-51.00 ment Information Center (NARDIC)

Alexandria, VA 22333
Navy Acquisition, Research & Develop-

ment Information Center (NARDIC) ODDRE (R&AT)/SCT
Pasadena, CA 91106-3955 Washington, DC 20301-3080

Information Resources Management Defense Advanced Research Projects
Washington, DC 20350-1000 Agency

Arlington, VA 22209-2308 (2)
Office of Naval Research
Arlington, VA 22217-5000 (3) Space & Naval Warfare Systems Command

Washington, DC 20363-5100
Office of Naval Technology

Arlington, VA 22217-5000 Naval Weapons Center

China Lake, CA 93555-6001
Naval Undersea Systems Center

Newport, RI 02841 Naval Research Laboratory

Washington, DC 20375-5000
Naval Surface Warfare Center

Dahlgren, VA 22428 Naval Surface Warfare Center

Silver Spring, MD 20390-5000
Naval Command, Control & Ocean

Surveillance Center Naval Postgraduate School
RDT&E Division Detachment Monterey, CA 93943
Warminster, PA 18974-5000 (9)

Rome Air Development Center/COE
AMSEL-RD-SE-AST Criffiss AFB, NY 13441 (2)
Fort Monmouth, NJ 07703-5000

Carnegie-Mellon University
Boeing Aerospace Pittsburgh, PA 15213

Seattle, WA 98124

IBM Corporation
C.S. Draper Laboratory, Inc. Caithersburg, MD 20879

Cambridge, MA 02139

ISSI
STARS Technology Center Austin, TX 78759

Arlington, VA 22203

